

3

Introduction to Visual
Basic Programming

Objectives

• To write simple programs in Visual Basic.
• To become familiar with fundamental data types.
• To understand computer memory concepts.
• To be able to use arithmetic operators.
• To understand the precedence of arithmetic

operators.
• To be able to write simple decision-making

statements.

“Where shall I begin, please your majesty?” she asked.
“Begin at the beginning,” the king said, very gravely, “and go
on till you come to the end; then stop.”

Lewis Carroll

It is a capital mistake to theorize before one has data.

Arthur Conan Doyle

. . . the wisest prophets make sure of the event first.

Horace Walpole

An actor entering through the door, you’ve got nothing. But if
he enters through the window, you’ve got a situation.

Billy Wilder

You shall see them on a beautiful quarto page, where a neat
rivulet of text shall meander through a meadow or margin.

Richard Brinsley Sheridan

Exit, pursued by a bear.

William Shakespeare

52 I

NTRODUCTION

TO

 V

ISUAL

 B

ASIC

 P

ROGRAMMING

C

HAPTER

 3

Outline

3.1 Introduction

3.2 Visual Programming and Event-Driven Programming

3.3 A Simple Program: Printing a Line of Text on the Form

3.4 Another Simple Program: Adding

Integer

s

3.5 Memory Concepts

3.6 Arithmetic

3.7 Operator Precedence

3.8 Decision Making: Comparison Operators

Summary • Terminology • Common Programming Errors • Good Programming Practices •
Testing and Debugging Tip • Software Engineering Observation • Self-Review Exercises •
Answers to Self-Review Exercises • Exercises

3.1 Introduction

The Visual Basic language facilitates a structured and disciplined approach to computer
program design. In this chapter we introduce Visual Basic programming and present sev-
eral examples that illustrate many important features. Each example is carefully analyzed
one statement at a time. In Chapters 4 and 5 we present an introduction to structured pro-
gramming.

3.2 Visual Programming and Event-Driven Programming

With visual programming, the programmer has the ability to create graphical user interfac-
es (GUIs) by pointing and clicking with the mouse. Visual programming eliminates the
need for the programmer to write code that generates the form, code for all the form’s prop-
erties, code for form placement on the screen, code to create and place a

Label

 on the
form, code to change foreground and background colors, etc. All of this code is provided
as part of the project. The programmer does not need to be an expert Windows programmer
to create functional Windows programs. The programmer creates the GUI and writes code
to describe what happens when the user interacts (clicks, presses a key, double-clicks, etc.)
with the GUI. These notifications, called

events

, are passed into the program by Microsoft’s
Windows operating system.

Programming the code that responds to these events is called

event-driven program-
ming

. With event-driven programs, the user dictates the order of program execution—not
the programmer. Instead of the program “driving” the user, the user “drives” the program.
With the user in control, using a computer becomes a much more user-friendly process.
Consider, for example, a web browser. When opened, the web browser may or may not load
a page by default. After the browser is loaded, it just “sits there” with nothing else hap-
pening. The browser will stay in this

event monitoring

 state (i.e., listening for events) indef-
initely. If the user presses a button, the browser then performs some action, but as soon as
the browser is done performing the action it returns to the event monitoring state. Thus, user
actions determine browser activity.

Event procedures

 are Visual Basic procedures that respond to events and are automat-
ically generated by the Visual Basic. The programmer adds code to respond to specific

C

HAPTER

 3 I

NTRODUCTION

TO

 V

ISUAL

 B

ASIC

 P

ROGRAMMING

53

events. Only events that are relevant to a program need be coded. In the next section we
demonstrate how to locate event procedures and add code to respond to events.

3.3 A Simple Program: Printing a Line of Text on the Form

Consider a simple program that prints a line of text on the form. The GUI contains two but-
tons,

Print

 and

Exit

, and is shown in the left picture of Fig. 3.1. The right picture of Fig.
3.1 shows the result after

Print

 is pressed many times.
 Figure 3.2 lists the

object

 (i.e., form,

CommandButton

, etc.) and some property set-
tings. We have only listed the properties we changed. We also provide a brief property
description.We refer to

CommandButton

s simply as

button

s.

Fig. 3.1

Program that prints on the form.

Object Property Property setting Description

form

Name frmWelcome

Identifies the form.

Caption Fig. 3.1: Printing
Text on the Form

Form title bar display.

Font MS Sans Serif Bold
12

pt
Font for display on the form.

Print

 button

Name cmdPrint

Identifies

Print

 button.

Caption Print

Text that appears on
button.

Font MS Sans Serif Bold
12

pt

Caption

 text font.

TabIndex 0

Tab order number.

Exit

 button

Name cmdExit

Identifies

Exit

 button.

Fig. 3.2

Object property settings (part 1 of 2).

CommandButton
with focus

CommandButton
without focus

Text printed directly on form (as a
result of pressing Print many times)

54 I

NTRODUCTION

TO

 V

ISUAL

 B

ASIC

 P

ROGRAMMING

C

HAPTER

 3

Good Programming Practice 3.1

Prefix the name of

CommandButton

s with

cmd

. This allows easy identification of

Com-
mandButton

s.

 3.1

The

Properties

 window contains the

Object

box

 that determines which object’s
properties are displayed (Fig. 3.3). The

Object

box

 lists the form and all objects on the
form. A selected object’s properties are displayed in the

Properties

 window.

The

TabIndex

 property determines which control gets the

focus

 (i.e., becomes the
active control) when the

Tab

 key is pressed at runtime. The control with a

TabIndex

value of

0

 gets the initial focus. Pressing the

Tab

 key at runtime transfers the focus to the
control with a

TabIndex

 of

1

. Eventually, if the

Tab

 key is pressed enough times, the
focus is transferred back to the control with a

TabIndex

 of

0

. The focus for each control
is displayed differently. For buttons, the one with the focus has a darker border around it
and a dotted inner square on its face as shown in Fig. 3.1. Some controls, such as

Label

s,
have a

TabIndex

 property but are not capable of receiving the focus. In this situation, the
next control (based upon

TabIndex values) capable of receiving the focus gets it. By
default, a control receives a TabIndex property based on the order in which it is added to
the form. The first control added gets 0, the next control added gets 1, etc. A control’s
TabIndex property can be changed in the Properties window.

Fig. 3.3 Properties window.

Caption Exit Text that appears on
button.

Font MS Sans Serif Bold
12 pt

Caption text font.

TabIndex 1 Tab order number.

Object Property Property setting Description

Fig. 3.2 Object property settings (part 2 of 2).

Object box

Object box
expanded

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 55

We now switch over from the visual programming side to the event-driven program-
ming side. If our program is going to print on the form, we must write code to accomplish
this. With GUI and event-driven programming, the user decides when text is printed on the
form by pressing Print . Each time Print is pressed, our program must respond by printing
to the form. When the button is pressed does not matter; the fact that the button is pressed
matters. Code must be written for the Print button’s event procedure that receives this
clicking (i.e., pressing) event.

When pressed, the End button terminates the program. Code must be written for the
End button’s event procedure that receives this clicking event. This event procedure for
End is completely separate from the event procedure for Print . Separate event procedures
make sense, because each button needs to respond differently.

Code is written in the Code window (Fig. 3.4). The Code window is displayed by
either clicking the Properties window’s View Code button or by double-clicking an
object. The View Code button is disabled unless the form is visible. Figure 3.4 is the result
of double-clicking the Print button at design time.

The code shown in Fig. 3.4 is generated by Visual Basic. The line

Private Sub cmdDisplay_Click()

begins the event procedure definition and is called the procedure definition header. The
event procedure’s name is cmdDisplay_Click (the parentheses () are necessary for
syntax purposes). Visual Basic creates the event procedure name by appending the event
type (Click) to the property Name with an underscore (_) added. Private Sub marks
the beginning of the procedure. The End Sub statement marks the end of the procedure.
Code that the programmer wants executed when Print is pressed is placed between the pro-
cedure definition header and the end of the procedure (i.e., End Sub). Figure 3.5 shows the
Code window with code. We will discuss the code momentarily.

Fig. 3.4 Code window.

Blinking
cursor

Programmer
writes code here

Click and drag here to resize

Margin
Indicator
bar

56 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Fig. 3.5 Code window displaying code.

Figure 3.6 labels two buttons Procedure View and Full Module View . Procedure
View lists only one procedure at a time. Full Module View lists the complete code for the
whole module (the form in this example) as shown in Fig. 3.6. The Procedure Separator
separates one procedure from another. The default is Full Module View . We pressed the
Procedure View button in Fig. 3.5. Any object’s code can be accessed with the Code
window’s Object box and Procedure box . The Object box lists the form and all
objects associated with the form. The Procedure box lists the procedures associated with
the object displayed in the Object box .

Fig. 3.6 Code window with Full Module View selected.

Full Module
View

Procedure
View

Object box Procedure boxProcedure Separator

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 57

The program code is shown in Fig. 3.7. The line numbers to the left of the code are not
part of the code but are placed there for reference purposes.

Procedure cmdDisplay_Click executes when button Print is pressed. The lines

' Every time this button is clicked, the message
' "Welcome to Visual Basic!" is printed on the form

are comments. Programmers insert comments to document programs and improve program
readability. Comments also help other people read and understand your program code.
Comments do not cause the computer to perform any action when a program is run. A com-
ment can begin with either ' or Rem (short for “remark”) and is a single-line comment that
terminates at the end of the current line. Most programmers use the single-quote style.

Good Programming Practice 3.2

Comments written to the right of a statement should be preceded by several spaces to en-
hance program readability. 3.2

Good Programming Practice 3.3

Visual Basic statements can be long. You might prefer to write comments above the line(s) of
code you are documenting. 3.3

Good Programming Practice 3.4

Precede comments that occupy a single line with a blank line. The blank line makes the com-
ment stand out and improves program readability. 3.4

The line

Print "Welcome to Visual Basic!"

prints the text “Welcome to Visual Basic! ” on the form using the Print method. Each
time this statement executes, the text is displayed on the next line. Method Print is a fea-
ture of the Visual Basic language and is unrelated to cmdDisplay ’s Caption (Print).

Good Programming Practice 3.5

Indent statements inside the bodies of event procedures. We recommend three spaces of in-
dentation. Indenting statements increases program readability. 3.5

1 Private Sub cmdDisplay_Click()
2
3 ' Every time this button is clicked, the message
4 ' "Welcome to Visual Basic!" is printed on the form
5 Print "Welcome to Visual Basic!"
6
7 End Sub
8
9 Private Sub cmdExit_Click()

10
11 End ' Terminate program
12
13 End Sub

Fig. 3.7 Program code.

58 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Drawing directly on the form using Print is not the best way of displaying informa-
tion, especially if the form contains controls. As is shown in Fig. 3.1, a control can hide text
that is displayed with Print . This problem is solved by displaying the text in a control.
We demonstrate this in the next example.

The only statement in the cmdExit_Click event procedure is

End ' Terminate program

The End statement terminates program execution (i.e., places the IDE in design mode).
Note the comment’s placement in the statement.

Software Engineering Observation 3.1

Even though multiple End statements are permitted, use only one. Normal program termi-
nation should occur in only one place. 3.1

When the user types a line of code and presses the Enter key, Visual Basic responds
either by generating a syntax error (also called a compile error) or by changing the colors
on the line. Colors may or may not change depending on what the user types.

A syntax error is a violation of the language syntax (i.e., a statement is not written cor-
rectly). Syntax errors occur when statements are missing information, when statements
have extra information, when names are misspelled, etc. When a syntax error occurs, a
dialog like Fig. 3.8 is displayed. Note that some syntax errors are not generated until the
programmer attempts to enter run mode.

Testing and Debugging Tip 3.1

As Visual Basic processes the line you typed, it may find one or more syntax errors. Visual
Basic will display an error message indicating what the problem is and where on the line the
problem is occurring. 3.1

If a statement does not generate syntax errors when the Enter key is pressed, a coloring
scheme (called syntax color highlighting) is imposed on the line of code. Comments are
changed to green. The event procedure names remain black. Words recognized by Visual
Basic (called keywords or reserved words) are changed to blue. Keywords (i.e., Private ,
Sub, End, Print , etc.) cannot be used for anything other than for the feature they repre-
sent. In addition to syntax color highlighting, Visual Basic may convert some lowercase let-
ters to uppercase, and vice versa.

Common Programming Error 3.1

Using a keyword as a variable name is a syntax error. 3.1

Fig. 3.8 Syntax error dialog.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 59

Testing and Debugging Tip 3.2

Syntax color highlighting helps the programmer avoid using keywords accidentally. 3.2

The colors used for comments, keywords, etc. can be set using the Editor Format tab
in the Options dialog (from the Tools menu). The Option dialog displaying the Editor
Format tab is shown in Fig. 3.9.

Fig. 3.9 Options dialog displaying Editor Format tag.

Fig. 3.10 Program that adds Integer s (part 1 of 3).

Editor
Format
tab

Element
that is color
highlighted

Color
choices

Font
choices

Sample
area

Margin
Indicator
bar

Font size
choices

Initial GUI at execution.

60 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Fig. 3.10 Program that adds Integer s (part 2 of 3).

GUI after user has entered 8 in
the first TextBox .

GUI after user has pressed Add .
The value 8 is added to the sum
and the sum is displayed in the

second TextBox . The first
TextBox is cleared.

GUI after user has entered 22 in

the first TextBox .

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 61

Fig. 3.10 Program that adds Integer s (part 3 of 3).

3.4 Another Simple Program: Adding Integer s

Our next program obtains Integer s from the user, computes their sum and displays the
result. The GUI consists of two Label s, two TextBox es and two buttons as shown in Fig.
3.10. The object properties are listed in Fig. 3.11 and the program is shown in Fig. 3.12.

Object Icon Property Property setting Property description

form Name frmAddition Identifies the form.

Caption Fig. 3.10:
Addition Program

Form title bar display.

Add button Name cmdAdd Identifies Add button.

Caption Add Text that appears on
button.

Exit button Name cmdExit Identifies Exit button.

Caption Exit Text that appears on
button.

Label Name lblSum Identifies the Label .

Caption The sum is Text Label displays.

Label Name lblPrompt Identifies the Label .

Caption Enter an integer Text Label displays.

Fig. 3.11 Object properties (part 1 of 2).

GUI after user has pressed Add .
The value 22 is added to the sum
and the sum is displayed in the
second TextBox . The first Text-
Box is cleared.

62 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

1 Dim sum As Integer ' Declare an Integer
2
3 Private Sub cmdAdd_Click()
4 sum = sum + txtInput.Text ' Add to sum
5 txtInput.Text = "" ' Clear TextBox
6 txtSum.Text = sum ' Display sum in TextBox
7 End Sub
8
9 Private Sub cmdExit_Click()

10 End ' Terminate execution
11 End Sub

Fig. 3.12 Program code.

Good Programming Practice 3.6

Prefix the name of TextBox es with txt to allow easy identification of TextBox es. 3.6

The TextBox control is introduced in this example. This is the primary control for
obtaining user input. TextBox es can also be used to display text. In our program one
TextBox accepts input from the user and the other outputs the sum.

Like other controls, TextBox es have many properties. Text is the most commonly
used TextBox property. The Text property stores the text for the TextBox . Text-
Boxes have their Enabled property set to True by default. If the Enabled property is
set to False , the user cannot interact with the TextBox and any text displayed in the
TextBox is grayed. Object txtSum has its Enabled property set to False . Note that
the text representing the sum appears gray, indicating that it is disabled.

TextBox Name txtSum Identifies TextBox .

Font MS San Serif
Bold 14 pt

Font for TextBox .

Text 0 Text that is displayed.

Enabled False Enabled/disabled.

TextBox Name txtInput Identifies TextBox .

Font MS San Serif
Bold 14 pt

Font for TextBox .

MaxLength 5 Maximum length of
character input.

TabIndex 0 Tab order.

Text (empty) Text that is displayed.

Object Icon Property Property setting Property description

Fig. 3.11 Object properties (part 2 of 2).

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 63

The MaxLength property value limits how many characters can be entered in a
TextBox . The default value is 0, which means that any number of characters can be input.
We set txtInput ’s MaxLength value to 5.

The first line of code resides in the general declaration. Statements placed in the gen-
eral declaration are available to every event procedure. The general declaration can be
accessed with the Code window’s Object box . The statement

Dim sum As Integer

declares a variable named sum. A variable is a location in the computer's memory where
a value can be stored for use by a program. A variable name is any valid identifier. Variable
names cannot be keywords and must begin with a letter. The maximum length of a variable
name is 255 characters containing only letters, numbers, and underscores. Visual Basic is
not case-sensitive—uppercase and lowercase letters are treated the same, so a1 and A1 are
considered identical. Keywords appear to be case-sensitive but they are not. Visual Basic
automatically sets to uppercase the first letter of keywords, so typing dim would be
changed to Dim.

Good Programming Practice 3.7

Begin each identifier with a lowercase letter. This will allow you to distinguish between a
valid identifier and a keyword. 3.7

Common Programming Error 3.2

Attempting to declare a variable name that does not begin with a letter is a syntax error. 3.2

Good Programming Practice 3.8

Choosing meaningful variable names helps a program to be “self-documenting.” A program
becomes easier to understand simply by reading the code rather than having to read manuals
or having to use excessive comments. 3.8

Keyword Dim explicitly (i.e., formally) declares variables. The clause beginning with
the keyword As is part of the declaration and describes the variable’s type (i.e., what type
of information can be stored). Integer means that the variable holds Integer values
(i.e., whole numbers such as 8, –22, 0, 31298). Integer s are stored in two bytes of
memory and have a range of –32767 to +32768. Integer variables are initialized to 0 by
default. We discuss other data types in the next several chapters.

Common Programming Error 3.3

Exceeding an Integer ’s range is a run-time error. 3.3

Variables can also be declared using special symbols called type declaration charac-
ters. For example, the declaration

Dim sum As Integer

could also be written as

Dim sum%

The percent sign, %, is the Integer type declaration character. Not all types have type
declaration characters.

64 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Common Programming Error 3.4

Attempting to use a type declaration character and keyword As together is a syntax error. 3.4

Variables can also be declared implicitly (without giving them a formal type) by men-
tioning the name. For example, consider the line

someVariable% = 8 ' Implicitly declare an Integer variable

which declares and initializes someVariable . When Visual Basic executes this line,
someVariable is declared and given a value of 8 with assignment operator =. Visual
Basic provides a means of forcing explicit declaration which we discuss later in this chap-
ter.

Good Programming Practice 3.9

Explicitly declaring variables makes programs clearer. 3.9

If a variable is not given a type when its declared, its type defaults to Variant . The
Variant data type can hold any type of value (i.e., Integer s, Single s, etc.).
Although the Variant type seems like a convenient type to use, it can be very tricky
determining the type of the value stored. We discuss the Variant type in Chapter 4.

Common Programming Error 3.5

It is an error to assume that the As clause in a declaration distributes to other variables on
the same line. For example, writing the declaration Dim x As Integer , y and assuming
that both x and y would be declared as Integer s would be incorrect, when in fact the dec-
laration would declare x to be an Integer and y (by default) to be a Variant . 3.5

Line 4

sum = sum + txtInput.Text

gets txtInput ’s text and adds it to sum, storing the result in sum. To access a property,
use the object’s name followed by a period and the property name. Before the addition op-
erator, +, adds the value input, the Text property value must be converted from a string
(i.e., text) to an Integer . The conversion is done implicitly—no code need be written to
force the conversion.

Common Programming Error 3.6

Expressions or values that cannot be implicitly converted result in run-time errors. 3.6

The previous assignment statement could have been written as

Let sum = sum + txtInput.Text

which uses keyword Let . When writing an assignment statement, keyword Let is option-
al. Our convention is to omit the keyword Let .

The lines

txtInput.Text = ""
txtSum.Text = sum

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 65

“clear” the characters from txtInput and display text in txtSum . The pair of double
quotes, "" , assigned to txtInput.Text is called an empty string. Assigning an empty
string to txtInput.Text clears the TextBox . When sum (an Integer) is assigned
to txtSum.Text , Visual Basic implicitly converts sum’s value to a string.

3.5 Memory Concepts
Variable names such as sum actually correspond to locations in the computer's memory.
Every variable has a name, a type, a size and a value. In the addition program of Fig. 3.12,
the statement

sum = sum + txtInput.Text

places into sum’s memory location the result of adding sum to txtInput.Text . Sup-
pose the value of txtInput.Text is "22" . Visual Basic converts the string "22" to
the Integer 22 and adds it to the value contained in sum’s memory location. The result
is then stored in sum’s memory location as shown in Fig. 3.13.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location. The process of storing a value in a memory location is known as destructive
read-in. The statement

sum = sum + txtInput.Text

that performs the addition involves destructive read-in. This occurs when the result of the
calculation is placed into location sum (destroying the previous value in sum).

Variable sum is used on the right side of the assignment expression. The value con-
tained in sum’s memory location must be read in order to do the addition operation. Thus,
when a value is read out of a memory location, the original value is preserved and the pro-
cess is nondestructive.

3.6 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summarized
in Fig. 3.14. Note the use of various special symbols not used in algebra. The caret (^) in-
dicates exponentiation, and the asterisk (*) indicates multiplication. The Integer divi-
sion operator (\) and the modulus (Mod) operator will be discussed shortly. Most
arithmetic operators are binary operators because they each operate on two operands. For
example, the expression sum + value contains the binary operator + and the two operands
sum and value .

Fig. 3.13 Memory locations showing the names and values of variables.

sum 0

txtInput.Text "22"

 0 + 22

sum 22

txtInput.Text "22"

value of sum read

value read and converted

66 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Visual Basic has separate operators for Integer division (the backslash, \) and
floating-point division (the forward slash, /). Integer division yields an Integer
result; for example, the expression 7 \ 4 evaluates to 1, and the expression 17 \ 5 evalu-
ates to 3. Note that any fractional part in Integer division is rounded before the division
takes place. For example, the expression 7.7 \ 4 would yield 2. The value 7.7 is rounded
to 8. The expression 7.3 \ 4 would yield 1. The value 7.3 is rounded to 7.

Floating-point division yields a floating-point number (i.e., a number with a decimal
point such as 7.7). We will discuss floating-point numbers in Chapter 4.

The modulus operator, Mod, yields the Integer remainder after Integer division.
Like the Integer division operator, the modulus operator rounds any fractional part
before performing the operation. The expression x Mod y yields the remainder after x is
divided by y . A result of 0 indicates that y divides evenly into x . Thus, 20 Mod 5 yields 0,
and 7 Mod 4 yields 3.

The negation operator, - , changes the sign of a number from positive to negative (or
from negative to positive). The expression - 8 changes the sign of 8 to negative, which
yields - 8. The negation operator is said to be a unary operator, because it operates on only
one operand. The operand must appear to the right of the negation operator.

Arithmetic expressions must be written in straight-line form when entering programs
into the computer. Thus, expressions such as “a raised to the power b” must be written as

 a ^ b

so that all constants, variables and operators appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do exist that support more natural notation for complex mathematical expressions.

Parentheses are used in expressions in much the same manner as in algebraic expres-
sions. For example, to multiply b times the quantity e + n we write

b * (e + n)

Visual Basic
operation

Arithmetic
operator

Algebraic
expression

Visual Basic
expression

Addition + x + y x + y

Subtraction - z – 8 z – 8

Multiplication * yb y * b

Division (float) /
v / u or

v / u

Division (Integer) \ none v \ u

Exponentiation ^ q p q ^ p

Negation - –e —e

Modulus Mod q mod r q Mod r

Fig. 3.14 Arithmetic operators.

v
u
--

ab

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 67

3.7 Operator Precedence
Visual Basic applies the operators in arithmetic expressions in a sequence determined by
the following rules of operator precedence, which are similar to those followed in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Thus, parentheses may be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are said to be at the “highest level
of precedence.” In cases of nested or embedded parentheses, the operators in the
innermost pair of parentheses are applied first.

2. Exponentiation is applied next. If an expression contains several exponentiation
operations, operators are applied from left to right.

3. Negation is applied next. If an expression contains several negation operations,
operators are applied from left to right.

4. Multiplication and floating-point division operations are applied next. If an ex-
pression contains several multiplication and floating-point division operations,
operators are applied from left to right. Multiplication and floating-point division
are said to be on the same level of precedence.

5. Integer division is applied next. If an expression contains several Integer
division operations, operators are applied from left to right.

6. Modulus operators are applied next. If an expression contains several modulus
arithmetic operations, operators are applied from left to right.

7. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, operators are applied from left to right.
Addition and subtraction also have the same level of precedence.

The rules of operator precedence enable Visual Basic to apply operators in the correct
order. Figure 3.15 summarizes these rules of operator precedence. This table will be
expanded as we introduce additional Visual Basic operators. A complete precedence chart
is included in the Appendices.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expres-
sion in the innermost pair is evaluated first. If there are
several pairs of parentheses “on the same level” (i.e., not
nested), they are evaluated left to right.

^ Exponentiation Evaluated second. If there are several, they are evaluated
left to right.

- Negation Evaluated third. If there are several, they are evaluated
left to right.

* or / Multiplication and
floating-point division

Evaluated fourth. If there are several, they are evaluated
left to right.

Fig. 3.15 Precedence of arithmetic operators.

68 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Now let us consider several expressions in light of the rules of operator precedence.
Each example lists an algebraic expression and its Visual Basic equivalent.

The following is an example of an arithmetic mean (average) of five terms:

Algebra:

Visual Basic: m = (a + b + c + d + e) / 5

The parentheses are required because floating-point division has higher precedence
than addition. The entire quantity (a + b + c + d + e) is to be divided by 5. If the paren-
theses are erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

The following is the equation of a straight line:

Algebra:

Visual Basic: y = m * x + b

No parentheses are required. Multiplication has a higher precedence than addition and is
applied first.

The following example contains exponentiation, multiplication, floating-point divi-
sion, addition and subtraction operations:

Algebra:

The circled numbers under the statement indicate the order in which the operators are ap-
plied. The exponentiation operator is evaluated first. The multiplication and floating-point
division operators are evaluated next in left-to-right order since they have higher prece-
dence than assignment, addition and subtraction. Addition and subtraction operators are
evaluated next in left-to-right order (addition followed by subtraction). The assignment op-
erator is evaluated last.

\ Division (Integer) Evaluated fifth. If there are several, they are evaluated left
to right.

Mod Modulus Evaluated sixth. If there are several, they are evaluated
left to right.

+ or - Addition and subtrac-
tion

Evaluated last. If there are several, they are evaluated left
to right.

Operator(s) Operation(s) Order of evaluation (precedence)

Fig. 3.15 Precedence of arithmetic operators.

m
a b c d e+ + + +

5
--=

a b c d
e
5
---+ + + +

y mx b+=

z prq w/x y–+=

6 2 5341

Z * r ^ q + w / x – yp=Visual Basic:

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 69

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the expression

a * (b + c) + c * (d + e)

does not contain nested parentheses. Rather, the parentheses are said to be on the same level
of precedence.

To develop a better understanding of the rules of operator precedence, consider how a
second-degree polynomial is evaluated.

The circled numbers under the statement indicate the order in which Visual Basic applies
the operators.

Suppose that variables a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and
x = 5. Figure 3.16 illustrates the order in which the operators are applied in the preceding
second-degree polynomial.

Fig. 3.16 Order in which operators in a second-degree polynomial are evaluated.

6 2 5341

y * x ^ 2 + b * x + ca=

y = 2 * 5 ^ 5 + 3 * 5 + 7

 5 ^ 5 is 25 (Exponentiation)

y = 2 * 25 + 3 * 5 + 7

 2 * 25 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7

 65 + 7 is 72 (Last addition)

y = 72 (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

70 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

As in algebra, it is acceptable to place extra parentheses in an expression to make the
expression clearer. Unnecessary parentheses are also called redundant parentheses. For
example, the preceding assignment statement could be parenthesized as follows without
changing its meaning:

 y = (a * x ^ 2) + (b * x) + c

Good Programming Practice 3.10

Placing extra parentheses in an expression can make that expression clearer. 3.10

3.8 Decision Making: Comparison Operators
This section introduces a simple version of Visual Basic’s If /Then structure that allows
a program to make a decision based on the truth or falsity of some condition. If the condi-
tion is met (i.e., the condition is True), the statement in the body of the If /Then structure
is executed. If the condition is not met (i.e., the condition is False), the body statement is
not executed.

Conditions in If /Then structures can be formed by using the comparison operators
summarized in Fig. 3.17. The comparison operators all have the same level of precedence.

Common Programming Error 3.7

Reversing the order of the symbols in the operators <>, >= and <= as in ><, => and =<,
respectively, are each syntax errors. 3.7

Common Programming Error 3.8

Writing a statement such as x = y = 0 and assuming that the variables x and y are both as-
signed zero, when in fact comparisons are taking place, can lead to subtle logic errors. 3.8

Good Programming Practice 3.11

Refer to the operator precedence chart when writing expressions containing many operators.
Confirm that the operators in the expression are performed in the order you expect. If you
are uncertain about the order of evaluation in a complex expression, use parentheses to force
the order, exactly as you would do in algebraic expressions. 3.11

Standard algebraic
equality operator or
relational operator

Visual Basic
comparison
operator

Example of
Visual Basic
condition

Meaning of Visual Basic
condition

= = d = g d is equal to g

≠ <> s <> r s is not equal to r

> > y > i y is greater than i

< < p < m p is less than m

≥ >= c >= e c is greater than or equal to e

≤ <= m <= s m is less than or equal to s

Fig. 3.17 Comparison operators.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 71

The next example uses six If /Then statements to compare two numbers input by the
user. The GUI is shown in Fig. 3.18, the properties in Fig. 3.19 and the code in Fig. 3.20.

Fig. 3.18 GUI for program that compares two Integer s.

Initial GUI at execution.

First input dialog displayed for user
input. User inputs 8 before pressing OK.

Second input dialog displayed for
user input. User inputs 22 before
pressing OK.

GUI after second input dialog is
closed.

72 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

 Object Icon Property Property setting Property description

form Name frmIfThen Identifies the form.
Caption Fig. 3.18:

Testing the
comparison
operators

Form title bar display.

Enter
Numbers button

Name cmdEnterNumbers Identifies Enter
Numbers button.

Caption Enter Numbers Text that appears on
button.

Font MS Sans Serif
bold 12 pt

Font for text on
button’s face.

Exit button Name cmdExit Identifies Exit button.

Caption Exit Text that appears on
button.

Font MS Sans Serif
bold 12 pt

Font for text on
button’s face.

Label Name lblDisplay1 Identifies the Label .

Caption (empty) Text Label displays.
Font MS Sans Serif

bold 12 pt
Font Label for
Label display.

Label Name lblDisplay2 Identifies the Label .

Caption (empty) Text Label displays.
Font MS Sans Serif

bold 12 pt
Font Label for
Label display.

Label Name lblDisplay3 Identifies the Label .

Caption (empty) Text Label displays.
Font MS Sans Serif

bold 12 pt
Font Label for
Label display.

Label Name lblDisplay4 Identifies the Label .

Caption (empty) Text Label displays.
Font MS Sans Serif

bold 12 pt
Font Label for
Label display.

Fig. 3.19 Object properties for program that compares two Integer s.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 73

1 ' Code listing for Fig. 3.18
2 ' Program compares two numbers
3 Option Explicit ' Force explicit declarations
4
5 Private Sub cmdEnterNumbers_Click()
6 Dim num1 As Integer, num2 As Integer
7
8 ' Clear Labels
9 lblDisplay1.Caption = ""

10 lblDisplay2.Caption = ""
11 lblDisplay3.Caption = ""
12 lblDisplay4.Caption = ""
13
14 ' Get values from user
15 num1 = InputBox("Enter first integer", "Input")
16 num2 = InputBox("Enter second integer", "Input")
17
18 ' Test the relationships between the numbers
19 If num1 = num2 Then
20 lblDisplay1.Caption = num1 & " is equal to " & num2
21 End If
22
23 If num1 <> num2 Then
24 lblDisplay1.Caption = num1 & " is not equal to " & num2
25 End If
26
27 If num1 > num2 Then
28 lblDisplay2.Caption = num1 & " is greater than " & num2
29 End If
30
31 If num1 < num2 Then
32 lblDisplay2.Caption = num1 & " is less than " & num2
33 End If
34
35 If num1 >= num2 Then
36 lblDisplay3.Caption = num1 & _
37 " is greater than or equal to " _
38 & num2
39 End If
40
41 If num1 <= num2 Then
42 lblDisplay4.Caption = num1 & _
43 " is less than or equal to " & num2
44 End If
45
46 End Sub
47
48 Private Sub cmdExit_Click()
49 End
50 End Sub

Fig. 3.20 Program that compares two Integer s.

The statement

74 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Option Explicit

forces variables to be explicitly declared. The Option Explicit statement is always
placed in the general declaration. Option Explicit can either be typed directly into the
general declaration or placed there by Visual Basic when the Require Variable Decla-
ration checkbox is checked. The Require Variable Declaration checkbox is on the Op-
tions dialog Editor tab, as shown in Fig. 3.21. The Options dialog is displayed when the
Tool menu’s Options menu item is selected. Require Variable Declaration is un-
checked by default. Once checked, each new form associated with a project includes Op-
tion Explicit in the general declaration. Note: If Require Variable Declaration is
unchecked and the form already exists, Option Explicit will not be added to the gen-
eral declaration. The programmer must type it in the general declaration. However, each
time a new form is created, Option Explicit is added by Visual Basic.

Testing and Debugging Tip 3.3

Force variable declarations by using Option Explicit . 3.3

Common Programming Error 3.9

If variable names are misspelled when not using Option Explicit , a misspelled variable
name will be declared and initialized to zero, usually resulting in a run-time logic error. 3.9

Note that Fig. 3.21 labels a few Editor tab features relevant to our earlier discussion
of Full Module View (Fig. 3.6). The user can also set the number of spaces that corre-
sponds to a tab in the Tab Width TextBox .

Fig. 3.21 Options window displaying Editor tab.

Forces explicit
declarations by adding
the line Option
Explicit to the
general declaration
(when checked)

Full Module
View is the
default when
checked

When checked,
displays Procedure
Separator lines in Full
Module View

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 75

In procedure cmdEnterNumbers_Click , variables num1 and num2 are declared
as Integer s. Variables can be declared just about anywhere in a procedure.Variables
may be declared on separate lines or on a single line.

Good Programming Practice 3.12

If you prefer to place declarations at the beginning of a procedure, separate those declara-
tions from executable statements in that procedure with one blank line to highlight where the
declarations end and the executable statements begin. 3.12

Good Programming Practice 3.13

Always place a blank line before and after a group of declarations that appears between ex-
ecutable statements in the body of a procedure. This makes the declarations stand out in the
program and contributes to program readability. 3.13

Function InputBox is used to get the values for num1 and num2 with the lines

 num1 = InputBox("Enter first integer", "Input")
 num2 = InputBox("Enter second integer", "Input")

Function InputBox displays an input dialog, which is shown in Fig. 3.22. The first argu-
ment (i.e., "Enter first integer") is the prompt and the second argument (i.e.,
"Input") determines what is displayed in the input dialog’s title bar. When displayed, the
dialog is modal—the user cannot interact with the form until the dialog is closed.

The input dialog contains a Label , two buttons and a TextBox . The Label displays
the first argument passed to InputBox . The user clicks the OK button after entering a
value in the TextBox . The Cancel button is pressed to cancel input. For this example,
the values returned by successive calls to InputBox are assigned to Integer s num1
and num2. The text representation of a number is implicitly converted (i.e., "78" is con-
verted to 78). If a value entered cannot be properly converted, a run-time error occurs.
Pressing Cancel also creates a run-time error, because the empty string cannot be con-
verted to an Integer . We discuss handling run-time errors in Chapter 13.

The line

If num1 = num2 Then

compares the contents of num1 to the contents of num2 for equality. If num1 is equivalent
to num2, the statement

Fig. 3.22 Dialog displayed by function InputBox .

76 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

lblDisplay1.Caption = num1 & " is equal to " & num2

is executed. The string concatenation operator, &, concatenates the implicitly converted
values of num1 and num2 to strings. Keywords End If mark the end of the If /Then
block. Since there is one statement in the body of the If /Then , the statement could be re-
written on a single line as

If num1 = num2 Then lblDisplay1 = num1 & " is equal to " & num2

End If is not required to terminate a single-line If /Then . We will use the End If con-
vention throughout this book. If the condition is False , the next If /Then is tested. Note
that in the above statement, we mentioned lblDisplay1 , not lblDisplay1.Cap-
tion . Each control has a default property (a property that is used when only the control’s
Name is used). A Label ’s default property is Caption .

Good Programming Practice 3.14

Write each If /Then structure on multiple lines using the End If to terminate the condition.
Indent the statement in the body of the If /Then structure to highlight the body of the struc-
ture and to enhance program readability. 3.14

Good Programming Practice 3.15

Explicitly writing the default property improves program readability. Since default proper-
ties are different for most controls, omitting the property name can make the code more dif-
ficult to read. 3.15

Notice the use of spacing in Fig. 3.20. White-space characters such as tabs and spaces
are normally ignored by the compiler (except when placed inside a set of double quotes).
Statements may be split over several lines if the line-continuation character, _, is used
(e.g., lines 36-38). A minimum of one white-space character must precede the line-contin-
uation character.

Common Programming Error 3.10

Splitting a statement over several lines without the line-continuation character is a syntax
error. 3.10

Common Programming Error 3.11

Not preceding the line-continuation character with at least one white-space character is a
syntax error. 3.11

Common Programming Error 3.12

Placing anything, including comments, after a line-continuation character is a syntax error. 3.12

Several statements may be combined onto a single line by using a colon, : , between
the statements. For example, the two statements

square = number ^ 2
cube = number ^ 3

could be combined on the single line

square = number ^ 2 : cube = number ^ 3

Statements can be spaced according to the programmer's preferences.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 77

Common Programming Error 3.13

Splitting an identifier or a keyword is a syntax error. 3.13

Good Programming Practice 3.16

Even though Visual Basic provides the colon to combine multiple statements on a single line,
writing only one statement per line improves program readability. 3.16

Summary
• With visual programming, the programmer has the ability to create graphical user interfaces

(GUIs) by pointing and clicking with the mouse.

• Visual programming eliminates the need for the programmer to write code that generates the form,
code for all the form’s properties, code for form placement on the screen, code to create and place
a Label on the form, code to change foreground and background colors, etc.

• The programmer creates the GUI and writes code to describe what happens when the user interacts
(clicks, presses a key, double-clicks, etc.) with the GUI. These interactions, called events, are
passed into the program by the Windows operating system.

• With event-driven programs, the user dictates the order of program execution.

• Event procedures are bodies of code that respond to events and are automatically generated by the
IDE. All the programmer need do is locate them and add code to respond to the events. Only events
relevant to a particular program need be coded.

• The Properties window contains the Object box that determines which object’s properties are
displayed. The Object box lists the form and all objects on the form. An object’s properties are
displayed in the Properties window when an object is clicked.

• Property TabIndex determines which control gets the focus (i.e., becomes the active control)
when the Tab key is pressed at runtime. The control with a TabIndex value of 0 gets the initial
focus. Pressing the Tab key at runtime transfers the focus to the control with a TabIndex of 1.

• Pressing the End button terminates the program.

• Code is written in the Code window. The Code window is displayed by clicking the Properties
window’s View Code button.

• Visual Basic creates the event procedure name by appending the event type (Click) to the prop-
erty Name (with an underscore _ added). Private Sub marks the beginning of the procedure.
The End Sub statement marks the end of the procedure. Code the programmer wants executed is
placed between the procedure definition header and the end of the procedure (i.e., End Sub).

• The Object box lists the form and all objects associated with the form. The Procedure box lists
the procedures associated with the object displayed in the Object box .

• Programmers insert comments to document programs and improve program readability. Com-
ments also help other people read and understand the program code. Comments do not cause the
computer to perform any action when a program is run. A comment can begin with either ' or Rem
(for “remark”) and is a single-line comment that terminates at the end of the current line.

• A program can print on the form using the Print method. Drawing directly on the form using
Print is not the best way of displaying information, especially if the form contains controls be-
cause a control can hide text that is displayed with Print . This problem is solved by displaying
the text in a control.

• The End statement terminates program execution (i.e., places the IDE in design mode).

• When a line of code is typed and Enter pressed, Visual Basic responds either by generating a syn-
tax error (also called a compile error) or by changing the colors on the line.

78 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

• A syntax error is a violation of the language syntax (i.e., a statement is not written correctly). As
a general rule, syntax errors tend to occur when statements are missing information, statements
have extra information, names are misspelled, etc.

• If a statement does not generate syntax errors when the Enter key is pressed, a coloring scheme
(called syntax-color highlighting) is imposed on the line of code. Comments are changed to green.
The event procedure names remain black. Words recognized by Visual Basic are called keywords
(also called reserved words) and appear blue.

• Keywords (i.e., Private , Sub, End, Print , etc.) cannot be used for anything other than for the
feature they represent. Any improper use results in a syntax error. In addition to syntax color high-
lighting, Visual Basic may convert some lowercase letters to uppercase, and vice versa. The colors
used for comments, keywords, etc. can be set using the Editor Format tab in the Options dialog
(from the Tools menu).

• The TextBox control is the primary control for obtaining user input. TextBox es can also be
used to display text.

• Text is the most commonly used TextBox property. The Text property stores the text for the
TextBox . TextBox es have their Enabled property set to True by default. If the Enabled
property is False , the user cannot interact with the TextBox .

• The MaxLength property value limits how many characters can be entered in a TextBox . The
default value is 0, which means that any number of characters can be input.

• Code that resides in the general declaration is available to every event procedure. The general dec-
laration can be accessed with the Code window’s Object box .

• A variable is a location in the computer's memory where a value can be stored for use by a pro-
gram. A variable name is any valid identifier. Variable names cannot be keywords and must begin
with a letter. The maximum length of a variable name is 255 characters containing only letters,
numbers and underscores.

• Visual Basic is not case-sensitive—uppercase and lowercase letters are treated the same.

• Keyword Dim explicitly declares variables. Keyword As describes the variable’s type (i.e., what
type of information can be stored). Integer means that the variable holds Integer values (i.e.,
whole numbers such as 8, –22, 0, 31298). Integer s have a range of +32768 to –32767. Inte-
ger variables are initialized to 0 by default.

• Variables can also be declared special symbols called type-declaration characters such as the per-
cent sign, %, for Integer . Not all types have type declaration characters.

• If a variable is not given a type when its declared, its type defaults to Variant . The Variant
data type can hold any type of value (i.e., Integer s, Single s, etc.).

• When writing an assignment statement, the keyword Let is optional.

• The pair of double quotes, "" , is called an empty string. Assigning an empty string to a Text-
Box ’s Text property “clears” the TextBox .

• Variable names correspond to locations in the computer's memory. Every variable has a name, a
type, a size and a value.

• Whenever a value is placed in memory, the value replaces the previous value in that location. Stor-
ing a value in a memory location is known as destructive read-in. When a value is read out of a
memory location, the process is nondestructive.

• Caret (̂) indicates exponentiation and asterisk (*) indicates multiplication.

• Most of the arithmetic operators are binary operators because they each operate on two operands.

• Visual Basic has separate operators for Integer and floating-point division. Integer division
yields an Integer result. Fractional parts in Integer division are rounded before the division.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 79

• Floating-point division yields a floating-point result (with a decimal point).

• The modulus operator, Mod, yields the Integer remainder after Integer division. Like the
Integer division operator, the modulus operator rounds any fractional part before performing
the operation. The expression x Mod y yields the remainder after x is divided by y . A remainder
of 0 indicates that y divides evenly into x .

• The negation operator, –, changes the sign of a number from positive to negative (or a vice versa).
The negation operator is a unary operator; it operates on one operand.

• Arithmetic expressions must be written in straight-line form.

• Parentheses are used in expressions much as in algebraic expressions.

• Parentheses may be used to force the order of evaluation to occur in any sequence desired by the
programmer. Parentheses are said to be at the “highest level of precedence.” Operators in the in-
nermost pair of parentheses are applied first.

• As in algebra, it is acceptable to place extra parentheses in an expression to make the expression
clearer. Unnecessary parentheses are also called redundant parentheses.

• The If /Then structure makes a decision based on the truth or falsity of some condition. If the
condition is True , the statement in the body of the If /Then structure is executed. If the condition
is False , the body statement is not executed.

• Conditions in If /Then structures can be formed by using the comparison operators.

• The Option Explicit statement forces variables to be explicitly declared. The Option Ex-
plicit statement is placed in the general declaration. Option Explicit can either be typed
directly into the general declaration or placed there by Visual Basic when the Require Variable
Declaration checkbox is checked.

• You can set the number of spaces that correspond to a tab in the Tab Width TextBox .

• Variables can be declared almost anywhere in a procedure.Variables may be declared on separate
lines or on a single line.

• Function InputBox displays an input dialog. The first argument is the prompt and the second
determines what is displayed in the input dialog’s title bar. When displayed, the dialog is modal—
the user cannot interact with the form until the dialog is closed.

• The ampersand operator, &, concatenates strings.

• Keywords End If mark the end of the If /Then block. End If is not required to terminate a
single-line If /Then .

• Each control has a default property (a property that is used when only the control’s Name is used).
A Label ’s default property is Caption .

• White-space characters such as tabs and spaces are normally ignored by the compiler.

• Statements may be split over several lines if the line-continuation character, _, is used. A mini-
mum of one white-space character must precede the line-continuation character.

• Statements may be combined onto a line by using a colon, : , between the statements.

• It is incorrect to split identifiers and keywords.

Terminology
addition operator, + binary operator
arithmetic operators button
As keyword Cancel button
assignment operator, = caret, ̂
asterisk, * Code window

80 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Common Programming Errors
3.1 Using a keyword as a variable name is a syntax error.
3.2 Attempting to declare a variable name that does not begin with a letter is a syntax error.
3.3 Exceeding an Integer ’s range is a run-time error.
3.4 Attempting to use a type declaration character and keyword As together is a syntax error.
3.5 It is an error to assume that the As clause in a declaration distributes to other variables on the

same line. For example, writing the declaration Dim x As Integer , y and assuming that
both x and y would be declared as Integer s would be incorrect, when in fact the declara-
tion would declare x to be an Integer and y (by default) to be a Variant .

3.6 Expressions or values that cannot be implicitly converted result in run-time errors.

colon, : negation operator, -
comments nested parentheses
comparison operators nondestructive read-in
compile error object
condition Object box
default property OK button
destructive read-in operand
Editor tab operator
Editor Format tab operator precedence
embedded parentheses Option Explicit
empty string Options dialog
Enabled property percent sign, %
End If Print method
End keyword Procedure box
End Sub procedure definition header
event Procedure Separator
event-driven programming Procedure View
event monitoring Require Variable Declaration checkbox
event procedure Rem
event type reserved word
explicit declaration single-line comment
False keyword statement
floating-point number string
focus string concatenation operator, &
Full Module View Sub keyword
general declaration syntax color highlighting
identifier syntax error
If /Then structure TabIndex property
implicit declaration Tab key
InputBox function Tab Width TextBox
Integer division operator, \ text
Integer keyword TextBox control
keyword Text property
Let keyword True keyword
line-continuation character, _ type
Margin Indicator bar type declaration character
MaxLength property unary operator
modal variable
modulus operator, Mod Variant

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 81

3.7 Reversing the order of the symbols in the operators <>, >= and <= as in ><, => and =<,
respectively, are syntax errors.

3.8 Writing a statement such as x = y = 0 and assuming that the variables x and y are both
assigned zero, when in fact comparisons are taking place. This can lead to subtle logic errors.

3.9 If variable names are misspelled when not using Option Explicit , a misspelled variable
name will be declared and initialized to zero, usually resulting in a run-time logic error.

3.10 Splitting a statement over several lines without the line-continuation character is a syntax
error.

3.11 Not preceding the line-continuation character with at least one white-space character is a
syntax error.

3.12 Placing anything, including comments, after a line-continuation character is a syntax error.
3.13 Splitting an identifier or a keyword is a syntax error.

Good Programming Practices
3.1 Prefix the name of CommandButton s with cmd. This allows easy identification of Com-

mandButton s.
3.2 Comments written to the right of a statement should be preceded by several spaces to en-

hance program readability.
3.3 Visual Basic statements can be long. You might prefer to write comments above the line(s)

of code you are documenting.
3.4 Precede comments that occupy a single line with a blank line. The blank line makes the com-

ment stand out and improves program readability.
3.5 Indent statements inside the bodies of event procedures. We recommend three spaces of in-

dentation. Indenting statements increases program readability.
3.6 Prefix the name of TextBox es with txt to allow easy identification of TextBox es.
3.7 Begin each identifier with a lowercase letter. This will allow you to distinguish between a

valid identifier and a keyword.
3.8 Choosing meaningful variable names helps a program to be “self-documenting.” A program

becomes easier to understand simply by reading the code rather than having to read manuals
or having to use excessive comments.

3.9 Explicitly declaring variables makes programs clearer.
3.10 Placing extra parentheses in an expression can make that expression clearer.
3.11 Refer to the operator precedence chart when writing expressions containing many operators.

Confirm that the operators in the expression are performed in the order you expect. If you are
uncertain about the order of evaluation in a complex expression, use parentheses to force the
order, exactly as you would do in algebraic expressions.

3.12 If you prefer to place declarations at the beginning of a procedure, separate those declarations
from executable statements in that procedure with one blank line to highlight where the dec-
larations end and the executable statements begin.

3.13 Always place a blank line before and after a group of declarations that appears between ex-
ecutable statements in the body of a procedure. This makes the declarations stand out in the
program and contributes to program readability.

3.14 Write each If /Then structure on multiple lines using the End If to terminate the condition.
Indent the statement in the body of the If /Then structure to highlight the body of the struc-
ture and to enhance program readability.

3.15 Explicitly writing the default property improves program readability. Since default proper-
ties are different for most controls, omitting the property name can make the code more dif-
ficult to read.

3.16 Even though Visual Basic provides the colon to combine multiple statements on a single line,
writing only one statement per line improves program readability.

82 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Testing and Debugging Tips
3.1 As Visual Basic processes the line you typed, it may find one or more syntax errors. Visual

Basic will display an error message indicating what the problem is and where on the line the
problem is occurring.

3.2 Syntax color highlighting helps the programmer avoid using keywords accidentally.
3.3 Force variable declarations by using Option Explicit .

Software Engineering Observation
3.1 Even though multiple End statements are permitted, use only one. Normal program termina-

tion should occur in only one place.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Keywords begin the body of an event procedure and keywords end
the body of an event procedure.

b) When a value is placed into a memory location, it is known as read-in.
c) What arithmetic operation(s) is/are on the same level of precedence as multiplication?
d) When parentheses are nested in an arithmetic expression, which set of parentheses is

evaluated first?
e) A location in a computer's memory that may contain different values at various times

throughout program execution is called a .
f) By default, Integer variables are initialized to the value .

3.2 State whether each of the following is true or false. If false, explain why.
a) A comment’s text is printed on the form as the comment is executed.
b) The Rem statement stores a string in the Visual Basic variable Remark .
c) Option Explicit forces explicit variable declaration.
d) All variables, when declared explicitly, must be given a data type either by using the As

keyword or by using a type-declaration character (if the data type has one).
e) The variables number and NuMbEr are identical.
f) Declarations can appear almost anywhere in the body of an event procedure.
g) The modulus operator, Mod, can be used only with Integer operands. Attempts to use

floating-point numbers (e.g., 19.88, 801.93, 3.14159, etc.) are syntax errors.
h) The arithmetic operators * , / and \ all have the same level of precedence.
i) Visual Basic syntax always requires arithmetic expressions to be enclosed in parenthe-

ses—otherwise, syntax errors occur.

3.3 Fill in the blanks in each of the following:
a) The property limits the number characters input in a TextBox .
b) The default data type is .
c) The character is the symbol for the string concatenation operator.
d) When a value is read out of a memory location, it is known as readout.

3.4 Write a single statement to accomplish each of the following:
a) Explicitly declare the variables cj , ventor and num to be of type Integer .
b) Assign “Hello! ” to the Label lblGreeting .
c) Combine the following three lines into a single line:

' Initialization
total% = 0
counter% = 1

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 83

d) Assign the sum of x , y and z to the variable sum. Assume that each variable is of type
Integer .

e) Decrement the variable count by 1, then subtract it from the variable total , and as-
sign the result to the variable u. Assume all variables to be of type Integer .

f) Assign the product of the Integer variables r , i , m, e and s to the variable g.
g) Calculate the remainder after total is divided by counter and assign the result to

remainder . Assume the variables to be of type Integer .
h) Assign the value returned from function InputBox to the variable userInput . The

function InputBox should display the message “Enter your data .” The Input-
Box 's title bar should display “Data Input .” Assume the variable userInput to be
of type Integer .

3.5 Write a statement or comment to accomplish each of the following:
a) State that a program will calculate the product of three Integer s.
b) Print the message “printing to the form ” on the form using the Print method.
c) Force variable declarations.
d) Compute the Integer average of the three Integer s contained in variables x , y and

z , and assign the result to the Integer variable result .
e) Print on the form “The product is ” followed by the value of the Integer variable

result .
f) Compare the Integer variables sum1 and sum2 for equality. If the result is true, set

the Integer variable flag to 76.

3.6 Identify and correct the error(s) in each of the following statements:
a) Dim False As Integer
b) Dim variable, inputValue As Integers
c) Integer oscii Rem declare variable
d) a + b = c ’ add a, b and assign result to c
e) d = t Modulus r + 50
f) variable = -65800 ’ variable is of type Integer
g) " Change BackColor property’s value
h) If (x > y)

 frmMyForm.Print x
i) Dim triplett As Integer, picks As Integer, End As Integer
j) triplett = picks = 10 ’ Initialize both variables to 10
k) x : y = oldValue Rem assign oldValue to both x and y

3.7 Given the equation b = 8e5 – n, which of the following, if any, are correct statements for this
equation?

a) b = 8 * e ^ 5 - n
b) b = (8 * e) ^ 5 - n
c) b = 8 * (e ^ 5) - n
d) b = 8 * e ^ (5 - n)
e) b = (8 * e) ^ ((5) - n)
f) b = 8 * e * e ^ 4 - n

3.8 State the order of evaluation of the operators in each of the following statements, and show
the value of m after each statement is performed. Assume m to be an Integer variable.

a) m = 7 + 3 * 6 \ 2 - 1
b) m = 2 Mod 2 + 2 * 2 - 2 / 2
c) m = 8 + 10 \ 2 * 5 - 16 \ 2
d) m = -5 - 8 Mod 4 + 7 * (2 ^ 2 + 2)
e) m = 10 Mod 3 ^ 1 ^ 2 - 8

84 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Answers to Self-Review Exercises
3.1 a) Sub, End Sub. b) destructive. c) floating-point division (/). d) innermost. e) vari-
able. f) zero.

3.2 a) False. Comments are not executable statements; nothing is printed.
b) False. Rem is simply another way of writing a comment.
c) True.
d) False. If a variable is not explicitly given a type, then it is given the default data type of

Variant .
e) True. Visual Basic is not case-sensitive.
f) True.
g) False. Floating-point numbers are rounded to Integer s before Mod is performed.
h) False. Multiplication (*) and floating-point division (/) have the same precedence. In-

teger division (\) has a lower precedence.
i) False. Visual Basic does not require all expressions to use parentheses.

3.3 a) MaxLength . b) Variant . c) ampersand, &. d) nondestructive.

3.4 a) Dim cj As Integer, ventor As Integer, num As Integer
b) lblGreeting.Caption = "Hello!"
c) total% = 0 : counter% = 1 ' Initialization
d) sum = x + y + z
e) u = total - (count - 1)
f) g = r * i * m * e * s
g) remainder = total Mod counter
h) userInput = InputBox("Enter your data", "Data Input")

3.5 a) ' This program will calculate the product of three integers
b) Print "printing to the form"
c) Option Explicit ' In general declaration
d) result = (x + y + z) / 3
e) Print "The product is " & result
f) If sum1 = sum2 Then

 flag = 76
End If

3.6 a) False is a keyword and may not be used as an identifier. Use a non-keyword as the vari-
able name.

b) Integers should be Integer .
c) A variable cannot be declared this way. Correction: Dim oscii As Integer .
d) The variable storing the result of the assignment (c) must be the left operand of the as-

signment operator. The statement should be rewritten as c = a + b .
e) Modulus should be Mod.
f) The number –65800 is out of range for an Integer . The value being assigned should

be in the range –32,768 to 32,767.
g) The double quotes should be single quotes or Rem to form a comment.
h) The Then keyword is missing and the statement should either be contained on one line

or be terminated by End If .
i) End is a keyword and may not be used as an identifier.
j) A comparison is being made rather than an assignment. Each assignment should be done

separately.
 triplett = 10
 picks = 10

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 85

k) Invalid syntax. Each assignment must be done separately.
 x = oldValue
 y = oldValue

3.7 a, c, f.

3.8 a) m = 7 + 3 * 6 \ 2 - 1
m = 7 + 18 \ 2 - 1
m = 7 + 9 - 1
m = 16 - 1
m = 15

b) m = 2 Mod 2 + 2 * 2 - 2 / 2
m = 2 Mod 2 + 4 - 2 / 2
m = 2 Mod 2 + 4 - 1
m = 0 + 4 - 1
m = 4 - 1
m = 3

c) m = 8 + 10 \ 2 * 5 - 16 \ 2
m = 8 + 10 \ 10 - 16 \ 2
m = 8 + 1 - 16 \ 2
m = 8 + 1 - 8
m = 9 - 8
m = 1

d) m = -5 - 8 Mod 4 + 7 * (2 ^ 2 + 2)
m = -5 - 8 Mod 4 + 7 * (4 + 2)
m = -5 - 8 Mod 4 + 7 * 6
m = -5 - 8 Mod 4 + 42
m = -5 - 0 + 42
m = -5 + 42
m = 37

e) m = 10 Mod 3 ^ 1 ^ 2 - 8
m = 10 Mod 3 ^ 1 - 8
m = 10 Mod 3 - 8
m = 1 - 8
m = -7

Exercises
3.9 Identify and correct the error(s) in each of the following statements:

a) Assume that Option Explicit has been set.

' Event code for procedure
Private Sub cmdDisplay_Click()
 value1 = 5 : value2 = 10

 If value1 > value2 Then
 Print value1
 End If
End Sub

b) Assume that Option Explicit has not been set.

86 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

' Event code for procedure
Private Sub lblGreeting_Click()
 Low1Val = 8

 ' Display the value in lblGreeting's Caption property
 lblGreeting = LowlVal
End Sub

c) animalName = "Giant " Cat "Parrot" ' Concatenate strings
d) thisIsAnIncrediblyLongVariableNameOf45Letters As Integer
e) Assume that the Integer variables c and j are declared and initialized to 47 and 55 ,

respectively.

Dim x As Integer

If c =< j Then
 x = 79
 frmMyForm.Print x
End If

f) Assume that the variables q, pcm and qp are declared as Integer s.

' Executable statement
q = 76 ; qp = ' Hard return after =
78 ; pcm = 61

3.10 Write a single statement or line that accomplishes each of the following:
a) Print the message "Visual Basic 6!!!!" on the form.
b) Assign the product of variables width22 and height88 to variable area51 .
c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-

ument a program).
d) Calculate the area of a circle and assign it to the Integer variable circleArea . Use

the formula area = (πr2), the variable radius and the value 3.14159 for π.
e) Concatenate the following two strings using the string concatenation operator and assign

the result to Label lblHoliday 's Caption : "Merry Christmas" and " and
a Happy New Year" .

3.11 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) A statement that makes a decision is .
c) Calculations are normally performed by statements.
d) The statement terminates program execution.
e) The method is used to display information to the form.
f) A is a message to the user indicating that some action is required.

3.12 State which of the following are true and which are false. If false, explain why.
a) Integer division has the same precedence as floating-point division.
b) The following are all valid variable names: _under_bar_ , m928134, majestic12 ,

her_sales , hisAccountTotal , cmdWrite , b, creditCardBalance1999 ,
YEAR_TO_DATE, __VoLs__LiSt__ .

c) The statement squareArea = side ^ 2 is a typical example of an assignment state-
ment.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 87

d) A valid arithmetic expression with no parentheses is evaluated from left to right regard-
less of the operators used in that expression.

e) The following are all invalid variable names: 2quarts , 1988 , &67h2 , vols88 ,
*true_or_FALSE , 99_DEGREES, _this , Then .

f) Visual Basic automatically generates the beginning and end code of event procedures.

3.13 Given the following declarations, list the type for each variable declared.
a) Dim traveler88 As Integer
b) number% = 76
c) Dim cars As Integer, trucks
d) Dim touchDowns, fieldGoals As Integer
e) portNumber = 80 ’ Implicit declaration

3.14 Given the equation y = ax3 + 7, which of the following, if any, are correct statements for this
equation?

a) y = a * (x ^ 3 + 7)
b) y = (a * x) ^ 3) + 7
c) y = (a * x * x * x + 7)
d) y = (a * (x * (x * x)) + 7)
e) y = (a * (x * x) ^ 2) + 7
f) y = (a) * (x) * (x) * (x) + (7)

3.15 State the order of evaluation of the operators in each of the following statements, and show
the value of x after each statement is performed. Assume x to be an Integer variable.

a) x = (3 * 9 * (3 + (9 * 3 / (3))))
b) x = 1 + 2 * 3 - 4 / 4 - 12 \ 6 * 6
c) x = ((10 - 4 * 2) \ 2 + (13 - 2 * 5)) ^ 2
d) x = 8.2 Mod 3 + 2 / 2 - -3
e) x = -2 + 7.4 \ 5 - 6 / 4 Mod 2

3.16 Which, if any, of the following statements contain variables involved in destructive read-in?
a) myVariable = txtTextBox.Text
b) V = O + L + S + 8 * 8
c) Print "Destructive read-in"
d) Print "a = 8"
e) Print x = 22
f) Print userName

3.17 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer "nothing." Assume that x = 2 and y = 3.

a) Print x
b) Print -y ^ 2
c) Print x + x
d) Print "x ="
e) txtTextBox.Text = "x + y"
f) z = x + y
g) Print x + y * 4 ^ 2 / 4 & " is the magic number!"

3.18 Write a program that inputs three different Integer s using function InputBox and prints
the sum, the average, the product, the smallest and the largest of these numbers on the form using
Print . Use only the single-selection version of the If /Then statement you learned in this chapter.

88 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Provide an Exit button to terminate program execution. (Hint: Each Print statement is similar to
Print "Sum is "; sum . The semicolon (;) instructs Visual Basic to print the variable's value
immediately after the last character printed.)

3.19 Write a program that reads in the radius of a circle as an Integer and prints the circle's
diameter, circumference and area to the form using the Print method. Do each of these calculations
inside a Print statement. Use the following formulas (r is the radius): diameter = 2r, circumference

= 2πr, area = πr2. Use the value 3.14159 for π. (Note: In this chapter, we have discussed only In-
teger variables. In Chapter 4 we will discuss floating-point numbers (i.e., values that can have dec-
imal points and data type Single).

3.20 Enhance Exercise 3.19 by displaying the diameter, circumference and area in Label s.

3.21 Write a temperature conversion program that converts a Fahrenheit temperature to a Celsius
temperature. Provide a TextBox for user input and a Label for displaying the converted tempera-
ture. Provide a Input button to read the value from the TextBox . Also provide the user with an Exit
button to end program execution. Use the following formula: Celsius = 5 / 9 x (Fahrenheit – 32).

3.22 Enhance Exercise 3.21 to provide a conversion from Fahrenheit to Kelvin. Display the con-
verted Kelvin temperature in a second Label . Use the formula: Kelvin = Celsius + 273.

3.23 Modify Exercise 3.21 to use function InputBox for input.

