Introduction to Visual
Basic Programming

Objectives

» To write simple programs in Visual Basic.

» To become familiar with fundamental data types.

» To understand computer memory concepts.

 To be able to use arithmetic operators.

» To understand the precedence of arithmetic
operators.

* To be able to write simple decision-making
statements.

“Where shall | begin, please your majesty?” she asked.

“Begin at the beginning,” the king said, very gravely, “and go

on till you come to the end; then stop.”

Lewis Carroll

It is a capital mistake to theorize before one has data.

Arthur Conan Doyle

. . . the wisest prophets make sure of the event first.

Horace Walpole

An actor entering through the door, you've got nothing. But if

he enters through the window, you've got a situation.

Billy Wilder

52 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Outline

3.1 Introduction

3.2 Visual Programming and Event-Driven Programming
3.3 A Simple Program: Printing a Line of Text on the Form
3.4 Another Simple Program: Adding Integer s

3.5 Memory Concepts

3.6 Arithmetic

3.7 Operator Precedence

3.8 Decision Making: Comparison Operators

Summary ¢ Terminology * Common Programming Errors « Good Programming Practices ¢
Testing and Debugging Tip * Software Engineering Observation « Self-Review Exercises ¢
Answers to Self-Review Exercises ¢ Exercises

3.1 Introduction

The Visual Basic language facilitates a structured and disciplined approach to computer
program design. In this chapter we introduce Visual Basic programming and present sev-
eral examples that illustrate many important features. Each example is carefully analyzed
one statement at a time. In Chapters 4 and 5 we present an introduction to structured pro-
gramming.

3.2 Visual Programming and Event-Driven Programming

With visual programming, the programmer has the ability to create graphical user interfac-
es (GUIs) by pointing and clicking with the mouse. Visual programming eliminates the
need for the programmer to write code that generates the form, code for all the form’s prop-
erties, code for form placement on the screen, code to create and pknel aon the
form, code to change foreground and background colors, etc. All of this code is provided
as part of the project. The programmer does not need to be an expert Windows programmer
to create functional Windows programs. The programmer creates the GUI and writes code
to describe what happens when the user interacts (clicks, presses a key, double-clicks, etc.)
with the GUI. These notifications, calledentsare passed into the program by Microsoft's
Windows operating system.

Programming the code that responds to these events is eadletidriven program-
ming With event-driven programs, the user dictates the order of program execution—not
the programmer. Instead of the program “driving” the user, the user “drives” the program.
With the user in control, using a computer becomes a much more user-friendly process.
Consider, for example, a web browser. When opened, the web browser may or may not load
a page by default. After the browser is loaded, it just “sits there” with nothing else hap-
pening. The browser will stay in thésent monitoringtate (i.e., listening for events) indef-
initely. If the user presses a button, the browser then performs some action, but as soon as
the browser is done performing the action it returns to the event monitoring state. Thus, user
actions determine browser activity.

Event procedureare Visual Basic procedures that respond to events and are automat-
ically generated by the Visual Basic. The programmer adds code to respond to specific

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 53

events. Only events that are relevant to a program need be coded. In the next section we
demonstrate how to locate event procedures and add code to respond to events.

3.3 A Simple Program: Printing a Line of Text on the Form

Consider a simple program that prints a line of text on the form. The GUI contains two but-
tons,Print andExit, and is shown in the left picture of Fig. 3.1. The right picture of Fig.
3.1 shows the result aftBrint is pressed many times.

Figure 3.2 lists thebject(i.e., form,CommandButton , etc.) and some property set-
tings. We have only listed the properties we changed. We also provide a brief property
description.We refer t€ommandButton s simply aduttors.

=1 B3

=l E3 & Fig. 3.1; Printing Text on the Form
Welcome to Visual Basic!
Welcome to Visual Basic!
Welcome to Visual Basic!
Welcome to Visual Basic!
Welcome to Visual Basic!
Welcome to Visual Basic!
Welcome to Visual Basic!

Welcome to Yisual Basic!

. Fig. 3.1: Printing Text on the Form

_ weldor 1 _
P;lnt Exit | welcorl Print Il Exit
Welcome to Visual Basic!
CommandButton CommandButton L(ext printed directly on form (as a
with focus without focus result of pressing Print many times)
Fig. 3.1 Program that prints on the form.
Object Property Property setting Description
form Name frmWelcome Identifies the form.
Caption Fig. 3.1: Printing Form title bar display.
Text on the Form
Font MS Sans Serif Bold Font for display on the form.
12 pt
Print button Name cmdPrint IdentifiesPrint button.
Caption Print Text that appears on
button.
Font MS Sans Serif Bold Caption text font.
12 pt
Tabindex 0 Tab order number.
Exit button Name cmdExit IdentifiesExit button.

Fig. 3.2

Object property settings (part 1 of 2).

54 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Object Property Property setting Description
Caption Exit Text that appears on
button.
Font MS Sans Serif Bold Caption text font.
12 pt
Tablndex 1 Tab order number.

Fig. 3.2 Object property settings (part 2 of 2).

Good Programming Practice 3.1

@ Prefix the name o€ommandButton s withcmd. This allows easy identification afom-
mandButton s.

The Properties window contains thebject box that determines which object’s
properties are displayed (Fig. 3.3). Thbject box lists the form and all objects on the
form. A selected object’s properties are displayed irfPtioperties window.

The Tabindex property determines which control gets theus(i.e., becomes the
active control) when th&ab key is pressed at runtime. The control witfiablndex
value of0 gets the initial focus. Pressing thab key at runtime transfers the focus to the
control with aTabindex of 1. Eventually, if theTab key is pressed enough times, the
focus is transferred back to the control withadbindex of 0. The focus for each control
is displayed differently. For buttons, the one with the focus has a darker border around it
and a dotted inner square on its face as shown in Fig. 3.1. Some controls,|sludl a5
have arabindex property but are not capable of receiving the focus. In this situation, the
next control (based upohablndex values) capable of receiving the focus gets it. By
default, a control receiveslablndex property based on the order in which it is added to
the form. The first control added geisthe next control added gets etc. A control's
Tablndex property can be changed in tRmperties window.

Propetties - crndDisplay Propetties - crndDisplay

IcmdDispIar CormmandButtan ;|‘70bject box
Alphabetic |Categarized I

cmdExit CormmandButkon
frmWelcome Form

crndDisplay

Appearance 1-3D Appearance 1-30 —
BackiZol 2Hs00000C
rau: uI:n:ur l,::|| o Object box EackColor] &HEDDDDDEL‘
ANCE Alse expanded anel Falze
{Name) (Name)

Returns the name used in code ko Returns the name used in code ko
|i|:|entif';.f an object, |iu:|entiF',.f an object,

Fig. 3.3 Properties window.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 55

We now switch over from the visual programming side to the event-driven program-
ming side. If our program is going to print on the form, we must write code to accomplish
this. With GUI and event-driven programming, the user decides when text is printed on the
form by pressindPrint . Each timePrint is pressed, our program must respond by printing
to the form. When the button is pressed does not matter; the fact that the button is pressed
matters. Code must be written for tReint button’s event procedure that receives this
clicking (i.e., pressing) event.

When pressed, thend button terminates the program. Code must be written for the
End button’s event procedure that receives this clicking event. This event procedure for
End is completely separate from the event procedurBriot . Separate event procedures
make sense, because each button needs to respond differently.

Code is written in the€€Code window (Fig. 3.4). TheCode window is displayed by
either clicking theProperties window’s View Code button or by double-clicking an
object. TheView Code button is disabled unless the form is visible. Figure 3.4 is the result
of double-clicking thérint button at design time.

The code shown in Fig. 3.4 is generated by Visual Basic. The line

Private Sub cmdDisplay_Click()

begins the event procedure definition and is callecbtbeedure definition headefrhe
event procedure’s hamedémdDisplay_Click (the parenthesd$ are necessary for
syntax purposes). Visual Basic creates the event procedure name by appenelimapthe
type(Click) to the propertfNamewith an underscore | added Private = Sub marks

the beginning of the procedure. TBed Sub statement marks the end of the procedure.
Code that the programmer wants executed vifren is pressed is placed between the pro-
cedure definition header and the end of the proceduresié Sub). Figure 3.5 shows the
Code window with code. We will discuss the code momentarily.

M Welcome - frmwWelcome [Code] M=l E
Icmdl]ispla}r j |Click j
F te 3ub il 1 Click
Blinking | riwvate cmdDisplay Click() :I
cursor
/ End/Zub
Margin
Indicator
bar
—
==+ »
Programmer, __LI _I/2

writes code here])
Click and drag here to resize

Fig. 3.4 Code window.

56 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

M Welcome - imWelcome [Code] |_ (O] x|
|cmdnisp|ay j ICIick j
Private Sub cwdDisplay Click() 7

' Every time this button is clicked, the 1
' "Welcowe to Visual Basic!™ is printed o]
Frint "Welcome to Visual EBasic!™

End Sub

il

il

rFs

-
w A

Procedure Full Module
View View

Fig. 3.5 Code window displaying code.

Figure 3.6 labels two butto&ocedure View andFull Module View.Procedure
View lists only one procedure at a tinkeill Module View lists the complete code for the
wholemodule(the form in this example) as shown in Fig. 3.6. Phecedure Separator
separates one procedure from another. The defdedilidviodule View. We pressed the
Procedure View button in Fig. 3.5. Any object’s code can be accessed wit@dlde
window’s Object box and Procedure box. The Object box lists the form and all
objects associated with the form. TPicedure box lists the procedures associated with
the object displayed in th@bject box.

— Object box Procedure Separator Procedure box]

M Welcome - hmWelcome [Code] |_ (O] x|
T

4>|cmdllispla].r \ j ICIit:k -

' Mlelcome to Vispal Basic!™ is printed on thnj
Print "Welcome to|WVisual Basic!®™

End Sub

Frivate Zubh cmdExit Clicki)
End ' Terminate program
End Sub

=f= 4 | By

Fig. 3.6 Code window with Full Module View selected.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 57

The program code is shown in Fig. 3.7. The line numbers to the left of the code are not
part of the code but are placed there for reference purposes.
ProceduremdDisplay_Click executes when buttd?rint is pressed. The lines

' Every time this button is clicked, the message
' "Welcome to Visual Basic!" is printed on the form

arecommentsProgrammers insert comments to document programs and improve program
readability. Comments also help other people read and understand your program code.
Comments do not cause the computer to perform any action when a program is run. A com-
ment can begin with eithéror Rem(short for “remark”) and is single-line commerthat
terminates at the end of the current line. Most programmers use the single-quote style.

Good Programming Practice 3.2

Comments written to the right of a statement should be preceded by several spaces to en-
hance program readability.

Good Programming Practice 3.3

code you are documenting.

Good Programming Practice 3.4

Precede comments that occupy a single line with a blank line. The blank line makes the com-
ment stand out and improves program readability.

g Visual Basic statements can be long. You might prefer to write comments above the line(s) of

The line
Print "Welcome to Visual Basic!"

prints the text¥Welcome to Visual Basic! " on the form using th€rint method Each

time thisstatemenexecutes, the text is displayed on the next line. Methiod is a fea-

ture of the Visual Basic language and is unrelataahtdDisplay 's Caption (Print).
Good Programming Practice 3.5

@ Indent statements inside the bodies of event procedures. We recommend three spaces of in-
dentation. Indenting statements increases program readability.

1 Private Sub cmdDisplay_Click()
2
3 ' Every time this button is clicked, the message
4 ' "Welcome to Visual Basic!" is printed on the form
5 Print "Welcome to Visual Basic!"
6
7 End Sub
8
9 Private Sub cmdExit_Click()
10
11 End ' Terminate program
12
13 End Sub

Fig. 3.7 Program code.

58 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Drawing directly on the form usingrint is not the best way of displaying informa-
tion, especially if the form contains controls. As is shown in Fig. 3.1, a control can hide text
that is displayed wittPrint . This problem is solved by displaying the text in a control.
We demonstrate this in the next example.

The only statement in ttmemdExit_Click event procedure is

End ' Terminate program

The End statement terminates program execution (i.e., places the IDE in design mode).
Note the comment’s placement in the statement.

- Software Engineering Observation 3.1
'\)‘ . . .
'%1 Even though multipl&nd statements are permitted, use only one. Normal program termi-
2 nation should occur in only one place.

When the user types a line of code and pressdsrtez key, Visual Basic responds
either by generating syntax error(also called @ompile erroj or by changing the colors
on the line. Colors may or may not change depending on what the user types.

A syntax error is a violation of the language syntax (i.e., a statement is not written cor-
rectly). Syntax errors occur when statements are missing information, when statements
have extra information, when names are misspelled, etc. When a syntax error occurs, a
dialog like Fig. 3.8 is displayed. Note that some syntax errors are not generated until the
programmer attempts to enter run mode.

Testing and Debugging Tip 3.1

@AS Visual Basic processes the line you typed, it may find one or more syntax errors. Visual
Basic will display an error message indicating what the problem is and where on the line the
problem is occurring.

If a statement does not generate syntax errors whémtkekey is pressed, a coloring
scheme (calledyntax color highlightingis imposed on the line of code. Comments are
changed to green. The event procedure names remain black. Words recognized by Visual
Basic (calleckeywordsorreserved wordsare changed to blue. Keywords (iRrivate
Sub, End, Print , etc.) cannot be used for anything other than for the feature they repre-
sent. In addition to syntax color highlighting, Visual Basic may convert some lowercase let-
ters to uppercase, and vice versa.

- Common Programming Error 3.1
@ Using a keyword as a variable name is a syntax error.

Microsoft Visual Basic]

& Compile errar:

Expected: line number or label or staterment or end of ztatement

Help

Fig. 3.8 Syntax error dialog.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 59

Testing and Debugging Tip 3.2
@ Syntax color highlighting helps the programmer avoid using keywords accidentally.

The colors used for comments, keywords, etc. can be set usiditbe Format tab
in the Options dialog (from theTools menu). TheOption dialog displaying th&ditor
Format tab is shown in Fig. 3.9.

Editor Dptions
Format -
tab Edifar ™ Editor Format | Generali Dnckingl Envilonmentl .-’-‘«dvancedi
— Code Colars Eoil
.. I - —y - Font
aurier New - :
Element Selection Text || choices
that is color Syntax Error Text Size:
. . Execution Point Text Font size
highlighted Breakpoint Text 10 choices
ESTUT;?TT:E LI ¥ Margin Indicator Bar
Sample————————————— Margin
y . Indicator
Color Foreground: Background: Indicator: LBCXYZahoxye bar
choices ke =] Jauto =] Ao =] \
Sample
area
Ok I Cancel Help

Fig. 3.9 Options dialog displaying Editor Format tag.

i Fig. 3.10: Addition Program | _ (O] x|

Enter an integer ||

The sum is |D
Add % E xit |

Fig. 3.10 Program that adds Integer s (part 1 of 3).

Initial GUI at execution.

60 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

., Fig. 3.10: Addition Program Hi=] E3

Enter an integer |3 [

The sum is |D

GUI after user has entered 8 in
the first TextBox .

Add Exit

i, Fig. 3.10: Addition Program H=]

Enter an Integer I GUI after user has pressed Add.

The value 8 is added to the sum
and the sum is displayed in the

ThE sSuUum is IB second TextBox .The first

TextBox is cleared.
E xit |

., Fig. 3.10: Addition Program | [O] =]
Enter an integer |22 T
. GUI after user has entered 22 in
The sumis |2 the first TextBox .

Add Exit |

Fig. 3.10 Program that adds Integer s (part 2 of 3).

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 61

. Fig. 3.10: Addition Program Hi=] E3

Enter it Integer GUI after user has pressed Add.

The value 22 is added to the sum
and the sum is displayed in the
second TextBox .The first Text-
Box is cleared.

The sum is |3[l

—

Fig. 3.10 Program that adds Integer s (part 3 of 3).

3.4 Another Simple Program: Adding Integer s

Our next program obtairlateger s from the user, computes their sum and displays the
result. The GUI consists of twabel s, twoTextBox es and two buttons as shown in Fig.
3.10. The object properties are listed in Fig. 3.11 and the program is shown in Fig. 3.12.

Object Ilcon Property Property setting Property description
form Name frmAddition Identifies the form.
Caption Fig. 3.10: Form title bar display.
Addition Program
Add button | Name cmdAdd IdentifiesAdd button.
Caption Add Text that appears on
button.
Exit button | Name cmdExit IdentifiesExit button.
Caption Exit Text that appears on
button.
Label A Name IbISum Identifies the_abel .
Caption The sum is TextLabel displays.
Label A Name IblPrompt Identifies the_abel .
Caption Enter an integer TextLabel displays.

Fig. 3.11 Obiject properties (part 1 of 2).

62 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Object Ilcon Property Property setting Property description
TextBox IEI_bl‘ Name XtSum IdentifiesTextBox .
Font MS San Serif Font forTextBox .
Bold 14 pt
Text 0 Text that is displayed.
Enabled False Enabled/disabled.
TextBox IT" Name txtinput IdentifiesTextBox .
a
Font MS San Serif Font forTextBox .
Bold 14 pt
MaxLength 5 Maximum length of
character input.
Tablndex 0 Tab order.
Text (empty) Text that is displayed.

Fig. 3.11 Obiject properties (part 2 of 2).

1 Dim sum As Integer ' Declare an Integer
2
3 Private Sub cmdAdd_Click()
4 sum = sum + txtinput.Text ' Add to sum
5 txtinput. Text =" ' Clear TextBox
6 txtSum.Text = sum ' Display sum in TextBox
7 End Sub
8
9 Private Sub cmdExit_Click()
10 End ' Terminate execution
11 End Sub

Fig. 3.12 Program code.

Good Programming Practice 3.6
@ Prefix the name ofextBox es withixt to allow easy identification dfextBox es.

The TextBox control is introduced in this example. This is the primary control for
obtaining user inpufTextBox es can also be used to display text. In our program one
TextBox accepts input from the user and the other outputs the sum.

Like other controlsTextBox es have many propertieBext is the most commonly
usedTextBox property. TheText property stores the text for ti@xtBox . Text-

Boxes have theiEnabled propertyset toTrue by default. If theEnabled property is
set toFalse , the user cannot interact with tliextBox and any text displayed in the
TextBox is grayed. ObjedixtSum has itsEnabled property set té-alse . Note that
the text representing the sum appears gray, indicating that it is disabled.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 63

The MaxLength property value limits how many characters can be entered in a
TextBox . The default value 8, which means that any number of characters can be input.
We settxtinput ’s MaxLength value to5.

The first line of code resides in theneral declarationStatements placed in the gen-
eral declaration are available to every event procedure. The general declaration can be
accessed with theode window’s Object box . The statement

Dim sum As Integer

declares a variable namedm. A variableis a location in the computer's memory where

a value can be stored for use by a program. A variable name is angeatitier. Variable

names cannot be keywords and must begin with a.l&ttermaximum length of a variable

name is 255 characters containing only letters, numbers, and underscores. Visual Basic is
not case-sensitive—uppercase and lowercase letters are treated the sdnamdgdl are
considered identical. Keywords appear to be case-sensitive but they are not. Visual Basic
automatically sets to uppercase the first letter of keywords, so tgingwould be
changed t®im.

Good Programming Practice 3.7

Begin each identifier with a lowercase letter. This will allow you to distinguish between a
valid identifier and a keyword.

Common Programming Error 3.2

Attempting to declare a variable name that does not begin with a letter is a syntax error.

Good Programming Practice 3.8

Choosing meaningful variable names helps a program to be “self-documenting.” A program
becomes easier to understand simply by reading the code rather than having to read manuals
or having to use excessive comments.

[

Keyword Dim explicitly (i.e., formally) declares variables. The clause beginning with
the keywordAs is part of the declaration and describesvidugable’s type (i.e., what type
of information can be storedhteger means that the variable holageger values
(i.e., whole numbers such as 8, —22, 0, 312B8¢ger s are stored in two bytes of
memory and have a range of —32767 to +32if88ger variables are initialized 1 by
default. We discuss other data types in the next several chapters.

Common Programming Error 3.3
@ Exceeding arinteger ’s range is a run-time error.

Variables can also be declared using special symbols t¢gtiedieclaration charac-
ters For example, the declaration

Dim sum As Integer
could also be written as
Dim sum%

Thepercent sign% is thelnteger type declaration characteNot all types have type
declaration characters.

64 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Common Programming Error 3.4
Attempting to use a type declaration character and keywertbgether is a syntax error.

Variables can also be declaietplicitly (without giving them a formal type) by men-
tioning the name. For example, consider the line

someVariable% = 8 ' Implicitly declare an Integer variable

which declares and initializesomeVariable . When Visual Basic executes this line,
someVariable is declared and given a value®fvith assignment operator. Visual

Basic provides a means of forcing explicit declaration which we discuss later in this chap-
ter.

Good Programming Practice 3.9
@ Explicitly declaring variables makes programs clearer.

If a variable is not given a type when its declared, its type defaulfariant . The
Variant data type can hold any type of value (ikteger s, Single s, etc.).
Although theVariant type seems like a convenient type to use, it can be very tricky
determining the type of the value stored. We discus¥#h@nt type in Chapter 4.

Common Programming Error 3.5

@ It is an error to assume that thes clause in a declaration distributes to other variables on

the same line. For example, writing the declaratiadim x As Integer , y and assuming
that bothx andy would be declared agteger s would be incorrect, when in fact the dec-
laration would declarex to be aninteger andy (by default) to be &ariant

Line 4
sum = sum + txtinput. Text

getstxtinput s text and adds it teum, storing the result isum. To access a property,
use the object’'s name followed by a period and the property name. Befadsitien op-
erator, +, adds the value input, tiext property value must be converted frorstidng
(i.e., text) to arinteger . The conversion is done implicity—no code need be written to
force the conversion.

Common Programming Error 3.6

ﬁ Expressions or values that cannot be implicitly converted result in run-time errors.

The previous assignment statement could have been written as
Let sum = sum + txtinput. Text

which uses keywortet . When writing an assignment statement, keywad is option-
al. Our convention is to omit the keywdtrdt .
The lines

txtinput. Text =™
IxtSum.Text = sum

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 65

“clear” the characters frorxtinput and display text imixtSum . The pair of double
guotes,™ , assigned taxtinput. Text is called arempty string Assigning an empty
string totxtinput. Text clears theTextBox . Whensum (aninteger) is assigned
to txtSum.Text , Visual Basic implicitly convertsum’s value to a string.

3.5 Memory Concepts

Variable names such asm actually correspond to locations in the computer's memory.
Every variable has a name, a type, a size and a value. In the addition program of Fig. 3.12,
the statement

sum = sum + txtlnput. Text

places intassum's memory location the result of addiegm to txtinput.Text . Sup-
pose the value dktlnput.Text is"22" . Visual Basic converts the strifig2" to
thelnteger 22 and adds it to the value containedimm’'s memory location. The result
is then stored isum's memory location as shown in Fig. 3.13.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location. The process of storing a value in a memory location is knalestasctive
read-in The statement

sum = sum + txtinput. Text

that performs the addition involves destructive read-in. This occurs when the result of the
calculation is placed into locati@um (destroying the previous valuesam).

Variablesum is used on the right side of the assignment expression. The value con-
tained insum’'s memory location must be read in order to do the addition operation. Thus,
when a value is read out of a memory location, the original value is preserved and the pro-
cess imondestructive

3.6 Arithmetic

Most programs perform arithmetic calculations. @héhmetic operatorare summarized
in Fig. 3.14. Note the use of various special symbols not used in algeb@réhg') in-
dicates exponentiation, and thsterisk(*) indicates multiplication. Thénteger divi-
sion operator (1) and themodulus (Mod operator will be discussed shortly. Most
arithmetic operators at@nary operatorsbecause they each operate on twerands For
example, the expressisam+ value contains the binary operatoand the two operands
sum andvalue .

sum 0 value of sumread sum 2'2

0+22
txtinput. Text I S— txtinput. Text "o
22 value read and converted P 22

Fig. 3.13 Memory locations showing the names and values of variables.

66 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Visual Basic Arithmetic Algebraic Visual Basic
operation operator expression expression
Addition + X+y X+y
Subtraction - z-8 z-8
Multiplication * yb y*b
Division (float) / v v/iu

v/uor -

u

Division (Integer) \ none viu
Exponentiation n qP q”rp
Negation - -e —e
Modulus Mod g mod r g Mod r

Fig. 3.14 Arithmetic operators.

Visual Basic has separate operatorsifideger division (the backslash,) and
floating-point division (the forward slash). Integer division yields aninteger
result; for example, the expression 4 evaluates td, and the expressidv \ 5 evalu-
ates ta3. Note that any fractional part integer division is rounded before the division
takes place. For example, the expresgign\ 4 would yield2. The valué/.7 is rounded
to 8. The expressiord.3 \ 4 would yieldl. The valuer.3 is rounded t@.

Floating-point division yields foating-point numbefi.e., a number with a decimal
point such as 7.7). We will discuss floating-point numbers in Chapter 4.

Themodulus operatgriMod yields thdnteger remainder afteinteger division.

Like the Integer division operator, the modulus operator rounds any fractional part
before performing the operation. The expressidiody yields the remainder aftaris
divided byy. A result of O indicates thgtdivides evenly int. Thus, 20Mod5 yields 0,

and 7Mod 4 yields 3.

Thenegation operatar- , changes the sign of a number from positive to negative (or
from negative to positive). The expressiod changes the sign of 8 to negative, which
yields- 8. The negation operator is said to henary operatoy because it operates on only
one operand. The operand must appear to the right of the negation operator.

Arithmetic expressions must be writtensimaight-line formwhen entering programs
into the computer. Thus, expressions suchaaaised to the powds” must be written as

a™b

so that all constants, variables and operators appear in a straight line. The algebraic notation
ab

is generally not acceptable to compilers, although some special-purpose software packages

do exist that support more natural notation for complex mathematical expressions.

Parentheses are used in expressions in much the same manner as in algebraic expres-
sions. For example, to multiply times the quantitg + n we write

b * (e +n)

CHAPTER

3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 67

3.7 Operator Precedence

Visual Basic applies the operators in arithmetic expressions in a sequence determined by
the following rules obperator precedencavhich are similar to those followed in algebra:

1.

The

Operators in expressions contained within pairs of parentheses are evaluated first.
Thus,parentheses may be used to force the order of evaluation to occur in any se-
guence desired by the programm@arentheses are said to be at the “highest level

of precedence.” In cases méstedor embeddegbarentheses, the operators in the
innermost pair of parentheses are applied first.

Exponentiation is applied next. If an expression contains several exponentiation
operations, operators are applied from left to right.

Negation is applied next. If an expression contains several negation operations,
operators are applied from left to right.

Multiplication and floating-point division operations are applied next. If an ex-
pression contains several multiplication and floating-point division operations,
operators are applied from left to right. Multiplication and floating-point division
are said to be on the same level of precedence.

. Integer division is applied next. If an expression contains sevetager

division operations, operators are applied from left to right.

. Modulus operators are applied next. If an expression contains several modulus

arithmetic operations, operators are applied from left to right.

. Addition and subtraction operations are applied last. If an expression contains sev-

eral addition and subtraction operations, operators are applied from left to right.
Addition and subtraction also have the same level of precedence.

rules of operator precedence enable Visual Basic to apply operators in the correct

order. Figure 3.15 summarizes these rules of operator precedence. This table will be
expanded as we introduce additional Visual Basic operators. A complete precedence chart
is included in the Appendices.

Operator(s) Operation(s) Order of evaluation (precedence)

0

* or/

Parentheses Evaluated first. If the parentheses are nested, the expres-
sion in the innermost pair is evaluated first. If there are
several pairs of parentheses “on the same level” (i.e., not
nested), they are evaluated left to right.

Exponentiation Evaluated second. If there are several, they are evaluated
left to right.

Negation Evaluated third. If there are several, they are evaluated
left to right.

Multiplication and Evaluated fourth. If there are several, they are evaluated
floating-point division left to right.

Fig. 3.15

Precedence of arithmetic operators.

68 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Operator(s) Operation(s) Order of evaluation (precedence)
\ Division (Integer) Evaluated fifth. If there are several, they are evaluated left
to right.
Mod Modulus Evaluated sixth. If there are several, they are evaluated
left to right.
+ or- Addition and subtrac- Evaluated last. If there are several, they are evaluated left
tion to right.

Fig. 3.15 Precedence of arithmetic operators.

Now let us consider several expressions in light of the rules of operator precedence.
Each example lists an algebraic expression and its Visual Basic equivalent.
The following is an example of an arithmetic mean (average) of five terms:
atb+c+d+e
5
Visual Basic;: m=(a+b+c+d+e)/5

Algebra: m =

The parentheses are required because floating-point division has higher precedence
than addition. The entire quantiig +b +c +d +e) is to be divided by 5. If the paren-
theses are erroneously omitted, we obtainb + ¢ +d + e / 5, which evaluates as

a+b+c+d+s
5
The following is the equation of a straight line:
Algebra: y = mx+ b
Visual Basic: y=m*x+b

No parentheses are required. Multiplication has a higher precedence than addition and is
applied first.

The following example contains exponentiation, multiplication, floating-point divi-
sion, addition and subtraction operations:

Algebra: z = pra+w/x—y

Z = p *r ~qg *+ w/ x —y

The circled numbers under the statement indicate the order in which the operators are ap-
plied. The exponentiation operator is evaluated first. The multiplication and floating-point
division operators are evaluated next in left-to-right order since they have higher prece-
dence than assignment, addition and subtraction. Addition and subtraction operators are

evaluated next in left-to-right order (addition followed by subtraction). The assignment op-
erator is evaluated last.

Visual Basic:

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 69

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the expression

a*(b+c)+c*(d+e)

does not contain nested parentheses. Rather, the parentheses are said to be on the same level
of precedence.
To develop a better understanding of the rules of operator precedence, consider how a

second-degree polynomial is evaluated.
+ b * x + ¢

y = a * x ™ 2
The circled numbers under the statement indicate the order in which Visual Basic applies
the operators.

Suppose that variablesb, ¢ andx are initialized as followsa =2,b=3,¢ =7 and

x = 5. Figure 3.16 illustrates the order in which the operators are applied in the preceding
second-degree polynomial.

Stepl.y=2*5"5+3*5+7

575is 25 (Exponentiation)

Step2.y=2*25+3*5+7

2*25is 50 (Leftmost multiplication)

Step3.y=50+3*5+7

3*5is 15 (Multiplication before addition)

Step4.y=50+15+7

50 + 15is 65 (Leftmost addition)

Step5.y=65+7

65+ 7is 72 (Last addition)

Step 6.y =72 (Last operation—place 72 into y)

Fig. 3.16 Order in which operators in a second-degree polynomial are evaluated.

70 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

As in algebra, it is acceptable to place extra parentheses in an expression to make the
expression clearer. Unnecessary parentheses are alsoredledlant parenthesegor
example, the preceding assignment statement could be parenthesized as follows without
changing its meaning:

y=(@*x*2)+(b*x)+c

Good Programming Practice 3.10
@ Placing extra parentheses in an expression can make that expression clearer.

3.8 Decision Making: Comparison Operators

This section introduces a simple version of Visual Bagfc&Then structurethat allows
a program to make a decision based on the truth or falsity of smmadion If the condi-
tion is met (i.e., the condition &ue), the statement in the body of tlfie/Then structure
is executed. If the condition is not met (i.e., the conditidraise), the body statement is
not executed.
Conditions inif /Then structures can be formed by using tieenparisoroperators
summarized in Fig. 3.17. The comparison operators all have the same level of precedence.

Common Programming Error 3.7

Reversing the order of the symbols in the operaters>= and<= as in><, => and=<,
respectively, are each syntax errors.

Common Programming Error 3.8

Writing a statement such as=y = 0 and assuming that the variabblesandy are both as-
signed zero, when in fact comparisons are taking place, can lead to subtle logic errors.

Good Programming Practice 3.11

Refer to the operator precedence chart when writing expressions containing many operators.
Confirm that the operators in the expression are performed in the order you expect. If you
are uncertain about the order of evaluation in a complex expression, use parentheses to force
the order, exactly as you would do in algebraic expressions.

RCE

Standard algebraic Visual Basic Example of

equality operator or comparison Visual Basic Meaning of Visual Basic
relational operator operator condition condition

= = d=g d isequaltg

F= <> s<>r S is not equal to

> > y>i y is greater than

< < p<m p is less tham

> >= c>=e c is greater than or equal ¢o
< <= m<=s m is less than or equal &

Fig. 3.17 Comparison operators.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 71

The next example uses 3$ix/Then statements to compare two numbers input by the
user. The GUI is shown in Fig. 3.18, the properties in Fig. 3.19 and the code in Fig. 3.20.

Initial GUI at execution.

First input dialog displayed for user
input. User inputs 8 before pressing OK.

Second input dialog displayed for
user input. User inputs 22 before
pressing OK.

GUI after second input dialog is
closed.

Fig. 3.18 GUI for program that compares two Integer s.

72 INTRODUCTION TO VISUAL BASIC PROGRAMMING

CHAPTER 3

Object Ilcon Property Property setting Property description
form Name frmIfThen Identifies the form.
Caption Fig. 3.18: Form title bar display.
Testing the
comparison
operators
Enter cmdEnterNumbers IdentifiesEnter

Numbers button

ﬂ Name

Numbers button.

Caption Enter Numbers Text that appears on
button.
Font MS Sans Serif Font for text on
bold 12 pt button’s face.
Exit button Name cmdExit IdentifiesExit button.
=
Caption Exit Text that appears on
button.
Font MS Sans Serif Font for text on
bold 12 pt button’s face.
Label ﬂ Name IblDisplay1 Identifies thd_abel .
Caption (empty) TextLabel displays.
Font MS Sans Serif FontLabel for
bold 12 pt Label display.
Label ﬂ Name IbIDisplay2 Identifies thd_abel .
Caption (empty) TextLabel displays.
Font MS Sans Serif FontLabel for
bold 12 pt Label display.
Label ﬂ Name IblDisplay3 Identifies the_abel .
Caption (empty) TextLabel displays.
Font MS Sans Serif FontLabel for
bold 12 pt Label display.
Label ﬂ Name IblDisplay4 Identifies thd_abel .
Caption (empty) TextLabel displays.
Font MS Sans Serif FontLabel for
bold 12 pt Label display.

Fig. 3.19 Object properties for program that compares two Integer s.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING

OCO~NOUA,WNPE

' Code listing for Fig. 3.18
' Program compares two numbers
Option Explicit ' Force explicit declarations

Private Sub cmdEnterNumbers_Click()
Dim num1 As Integer, num2 As Integer

' Clear Labels
IbIDisplayl.Caption = ™"
IbIDisplay2.Caption ="
IbIDisplay3.Caption = ""
IbIDisplay4.Caption = ""

' Get values from user

num1l = InputBox("Enter first integer", "Input")
num2 = InputBox("Enter second integer", "Input")

' Test the relationships between the numbers
If num1 = num2 Then

IbIDisplayl.Caption = numl & " is equal to " & num2
End If

If num1 <> num2 Then
IbIDisplayl.Caption = numl & " is not equal to " & hum2
End If

If num1 > num2 Then
IbIDisplay2.Caption = numl & " is greater than " & num2
End If

If numl1 < num2 Then
IbIDisplay2.Caption = numl & " is less than " & num2
End If

If numl1 >= num2 Then
IbIDisplay3.Caption = numl & _
" is greater than or equal to " _
& num2
End If

If num1 <= num2 Then
IbIDisplay4.Caption = numl & _
" is less than or equal to " & num2
End If

End Sub
Private Sub cmdExit_Click()

End
End Sub

73

Fig. 3.20 Program that compares two Integer s.

The statement

74 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Option Explicit

forces variables to be explicitly declared. Tption Explicit statement is always
placed in the general declarati@ption Explicit can either be typed directly into the
general declaration or placed there by Visual Basic wheRé&aeiire Variable Decla-
ration checkboxs checked. ThR®equire Variable Declaration checkbox is on th®p-
tions dialogEditor tab,as shown in Fig. 3.21. Tl@ptions dialog is displayed when the
Tool menu’sOptions menu item is selecte®Require Variable Declaration is un-
checked by default. Once checked, each new form associated with a project i@gudes
tion Explicit in the general declaration. NoteRequire Variable Declaration is
unchecked and the form already exi€iption Explicit will not be added to the gen-
eral declaration. The programmer must type it in the general declaration. However, each
time a new form is create@ption Explicit is added by Visual Basic.

Testing and Debugging Tip 3.3
@ Force variable declarations by usi@ption Explicit

Common Programming Error 3.9

If variable names are misspelled when not uédhpgon Explicit , a misspelled variable
name will be declared and initialized to zero, usually resulting in a run-time logic error.

Note that Fig. 3.21 labels a feiditor tab features relevant to our earlier discussion
of Full Module View (Fig. 3.6). The user can also set the number of spaces that corre-
sponds to a tab in thEab Width TextBox .

Forces explicit Options
declarations by adding
the line Option

Explicit to the —Code Settings
general declaration v i

Editor |Editnl Fnlmatl Generali Dockingl Envilonmentl .-’-‘«dvancedi

: ¥ Auta Indent
(when checked) ‘l- Require Wariable Declaration
£eq Tab width: | 3
V¥ &uto List Members
V¥ Aok Quick Info

Full Module
. . v Aukao Data Ti
View is the Ele
default when o .
checked Window Settings
¥ Drag-and-Drop Text Editing
T~
¥ Default to Full Module Yiew
When checked, ¥ Procedure Separator
displays Procedure /

Separator lines in Full
Module View

(] I Cancel Help

Fig. 3.21 Options window displaying Editor tab.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 75

In proceduremdEnterNumbers_Click , variablesmum1 andnum?2 are declared
asinteger s. Variables can be declared just about anywhere in a procedure.Variables
may be declared on separate lines or on a single line.

Good Programming Practice 3.12

If you prefer to place declarations at the beginning of a procedure, separate those declara-
tions from executable statements in that procedure with one blank line to highlight where the
declarations end and the executable statements begin.

Good Programming Practice 3.13

g Always place a blank line before and after a group of declarations that appears between ex-
ecutable statements in the body of a procedure. This makes the declarations stand out in the

program and contributes to program readability.

Function/nputBox is used to get the values faum1 andnum?2 with the lines

numl = InputBox("Enter first integer”, "Input")
num2 = InputBox("Enter second integer", "Input”)

FunctioninputBox displays arinput dialog,which is shown in Fig. 3.22. The first argu-
ment (i.e.,"Enter first integer") is the prompt and the second argument (i.e.,
"Input") determines what is displayed in the input dialog’s title bar. When displayed, the
dialog ismodal—the user cannot interact with the form until the dialog is closed.

The input dialog containslaabel , two buttons and &extBox . TheLabel displays
the first argument passed lflgoutBox . The user clicks th®K button after entering a
value in theTextBox . TheCancel button is pressed to cancel input. For this example,
the values returned by successive callputBox are assigned timteger snuml
andnumz2. The text representation of a number is implicitly converted ‘(V8', is con-
verted to78). If a value entered cannot be properly converted, a run-time error occurs.
PressingCancel also creates a run-time error, because the empty string cannot be con-
verted to arinteger . We discuss handling run-time errors in Chapter 13.

The line

If numl = num2 Then

compares the contentsrmiml to the contents afum2 for equality. Ifnumlis equivalent
to num2, the statement

Input %] |
Enter first integer
E]

Fig. 3.22 Dialog displayed by function InputBox

76 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

IbIDisplayl.Caption = numl & " is equal to " & num2

is executed. Thetring concatenation operatp&, concatenates the implicitly converted
values ofnuml andnum?2 to strings. Keyword€nd If mark the end of thé /Then
block. Since there is one statement in the body dff ti€hen, the statement could be re-
written on a single line as

Ifnuml1=num2 Then IbIDisplayl =num1&"is equal to" & num2

End If is not required to terminate a single-liie/Then. We will use theend If con-
vention throughout this book. If the conditiorHalse , the nexif /Then is tested. Note
that in the above statement, we mentiol®Displayl , hotlblDisplayl.Cap-

tion . Each control hasa@efault property(a property that is used when only the control's
Nameis used). ALabel 's default property i€aption

Good Programming Practice 3.14

Write eachf /Then structure on multiple lines using th&d If to terminate the condition.
Indent the statement in the body of thé Then structure to highlight the body of the struc-
ture and to enhance program readability.

Good Programming Practice 3.15

Explicitly writing the default property improves program readability. Since default proper-
ties are different for most controls, omitting the property name can make the code more dif-
ficult to read.

[

Notice the use of spacing in Fig. 3.20hite-spaceharacterssuch as tabs and spaces
are normally ignored by the compiler (except when placed inside a set of double quotes).
Statements may be split over several lines iflite-continuation character, , is used
(e.g., lines 36-38). A minimum of one white-space character must precede the line-contin-
uation character.

Common Programming Error 3.10

|

Splitting a statement over several lines without the line-continuation character is a syntax
error.

Common Programming Error 3.11

|

Not preceding the line-continuation character with at least one white-space character is a
syntax error.

Common Programming Error 3.12

Placing anything, including comments, after a line-continuation character is a syntax error.

o O

Several statements may be combined onto a single line by using a:cdvetyween
the statements. For example, the two statements

square = number * 2
cube = number * 3

could be combined on the single line
square = number ” 2 : cube = number * 3

Statements can be spaced according to the programmer's preferences.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 77

Common Programming Error 3.13

@ Splitting an identifier or a keyword is a syntax error.

Good Programming Practice 3.16

@ Even though Visual Basic provides the colon to combine multiple statements on a single line,

writing only one statement per line improves program readability.

Summary

With visual programming, the programmer has the ability to create graphical user interfaces
(GUIs) by pointing and clicking with the mouse.

Visual programming eliminates the need for the programmer to write code that generates the form,
code for all the form’s properties, code for form placement on the screen, code to create and place
alLabel on the form, code to change foreground and background colors, etc.

The programmer creates the GUI and writes code to describe what happens when the user interacts
(clicks, presses a key, double-clicks, etc.) with the GUI. These interactions, called events, are
passed into the program by the Windows operating system.

With event-driven programs, the user dictates the order of program execution.

Event procedures are bodies of code that respond to events and are automatically generated by the
IDE. All the programmer need do is locate them and add code to respond to the events. Only events
relevant to a particular program need be coded.

TheProperties window contains th©bject box that determines which object’s properties are
displayed. Thé®bject box lists the form and all objects on the form. An object’s properties are
displayed in thé’roperties window when an object is clicked.

PropertyTabindex determines which control gets the focus (i.e., becomes the active control)
when the Tab key is pressed at runtime. The control withéndex value of0 gets the initial
focus. Pressing the Tab key at runtime transfers the focus to the controMatiinaex of 1.

Pressing th&nd button terminates the program.

Code is written in th€ode window. TheCode window is displayed by clicking tHeroperties
window’s View Code button.

Visual Basic creates the event procedure hame by appending the eve@litkpe)(to the prop-

erty Name(with an underscore added)Private Sub marks the beginning of the procedure.
TheEnd Sub statement marks the end of the procedure. Code the programmer wants executed is
placed between the procedure definition header and the end of the procedimedisub).

TheObject box lists the form and all objects associated with the form Prbeedure box lists
the procedures associated with the object displayed iDhfext box.

Programmers insert comments to document programs and improve program readability. Com-
ments also help other people read and understand the program code. Comments do not cause the
computer to perform any action when a program is run. A comment can begin with @itfRam

(for “remark”) and is a single-line comment that terminates at the end of the current line.

A program can print on the form using tRant method. Drawing directly on the form using
Print is not the best way of displaying information, especially if the form contains controls be-
cause a control can hide text that is displayed Ritht . This problem is solved by displaying

the text in a control.

TheEnd statement terminates program execution (i.e., places the IDE in design mode).

When a line of code is typed and Enter pressed, Visual Basic responds either by generating a syn-
tax error (also called a compile error) or by changing the colors on the line.

78 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

» A syntax error is a violation of the language syntax (i.e., a statement is not written correctly). As
a general rule, syntax errors tend to occur when statements are missing information, statements
have extra information, names are misspelled, etc.

« If a statement does not generate syntax errors when the Enter key is pressed, a coloring scheme
(called syntax-color highlighting) is imposed on the line of code. Comments are changed to green.
The event procedure names remain black. Words recognized by Visual Basic are called keywords
(also called reserved words) and appear blue.

» Keywords (i.e.Private , Sub, End, Print , etc.) cannot be used for anything other than for the
feature they represent. Any improper use results in a syntax error. In addition to syntax color high-
lighting, Visual Basic may convert some lowercase letters to uppercase, and vice versa. The colors
used for comments, keywords, etc. can be set usirigditer Format tab in theOptions dialog
(from theTools menu).

» The TextBox control is the primary control for obtaining user inptéxtBox es can also be
used to display text.

e Text is the most commonly usd@xtBox property. Thelext property stores the text for the
TextBox . TextBox es have theiEnabled property set tdrue by default. If theEnabled
property isFalse , the user cannot interact with thextBox .

* TheMaxLength property value limits how many characters can be entere@ent8ox . The
default value i®), which means that any number of characters can be input.

» Code that resides in the general declaration is available to every event procedure. The general dec-
laration can be accessed with tbede window’s Object box.

» A variable is a location in the computer's memory where a value can be stored for use by a pro-
gram. A variable name is any valid identifier. Variable names cannot be keywords and must begin
with a letter. The maximum length of a variable name is 255 characters containing only letters,
numbers and underscores.

« Visual Basic is not case-sensitive—uppercase and lowercase letters are treated the same.

» KeywordDim explicitly declares variables. KeywoAs describes the variable’s type (i.e., what
type of information can be storethteger means that the variable holdseger values (i.e.,
whole numbers such as 8, —22, 0, 312B8kger s have arange of +32768 to —327IBiTe-
ger variables are initialized 1@ by default.

» Variables can also be declared special symbols called type-declaration characters such as the per-
cent sign% for Integer . Not all types have type declaration characters.

« If a variable is not given a type when its declared, its type defalltartant . TheVariant
data type can hold any type of value (ileteger s,Single s, etc.).

* When writing an assignment statement, the keywetd is optional.

» The pair of double quote¥, , is called an empty string. Assigning an empty string Tex-
Box's Text property “clears” th@extBox .

» Variable names correspond to locations in the computer's memory. Every variable has a name, a
type, a size and a value.

» Whenever a value is placed in memory, the value replaces the previous value in that location. Stor-
ing a value in a memory location is known as destructive read-in. When a value is read out of a
memory location, the process is nondestructive.

» Caret () indicates exponentiation and asteriskifdicates multiplication.
» Most of the arithmetic operators are binary operators because they each operate on two operands.

* Visual Basic has separate operatordriteger and floating-point divisioninteger division
yields aninteger result. Fractional parts integer division are rounded before the division.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 79

* Floating-point division yields a floating-point result (with a decimal point).

» The modulus operatoMod, yields thelnteger remainder aftemteger division. Like the
Integer division operator, the modulus operator rounds any fractional part before performing
the operation. The expressigrMody yields the remainder afteris divided byy. A remainder
of 0 indicates thag divides evenly intcx.

» The negation operater, changes the sign of a number from positive to negative (or a vice versa).
The negation operator is a unary operator; it operates on one operand.

 Arithmetic expressions must be written in straight-line form.
» Parentheses are used in expressions much as in algebraic expressions.

» Parentheses may be used to force the order of evaluation to occur in any sequence desired by the
programmer. Parentheses are said to be at the “highest level of precedence.” Operators in the in-
nermost pair of parentheses are applied first.

» Asin algebra, it is acceptable to place extra parentheses in an expression to make the expression
clearer. Unnecessary parentheses are also called redundant parentheses.

» Thelf /Then structure makes a decision based on the truth or falsity of some condition. If the
condition isTrue , the statement in the body of tfie/Then structure is executed. If the condition
is False , the body statement is not executed.

« Conditions inlf /Then structures can be formed by using the comparison operators.

e TheOption Explicit statementorces variables to be explicitly declared. Thation Ex-
plicit statement is placed in the general declara@gtion Explicit can either be typed
directly into the general declaration or placed there by Visual Basic wh&etlugre Variable
Declaration checkbox is checked.

* You can set the number of spaces that correspond to a tabliakttwidth TextBox .

» Variables can be declared almost anywhere in a procedure.Variables may be declared on separate
lines or on a single line.

» FunctionlnputBox displays an input dialog. The first argument is the prompt and the second
determines what is displayed in the input dialog’s title bar. When displayed, the dialog is modal—
the user cannot interact with the form until the dialog is closed.

» The ampersand operatés, concatenates strings.

» Keywordstnd If mark the end of th# /Then block. End If is not required to terminate a
single-linelf /Then.

« Each control has a default property (a property that is used when only the cotaréss used).
A Label ’s default property i€aption

» White-space characters such as tabs and spaces are normally ignored by the compiler.

« Statements may be split over several lines if the line-continuation chargdteysed. A mini-
mum of one white-space character must precede the line-continuation character.

» Statements may be combined onto a line by using a coldretween the statements.
* Itis incorrect to split identifiers and keywords.

Terminology

addition operatort binary operator
arithmetic operators button

As keyword Cancel button
assignment operatcr, caret,

asterisk* Code window

80 INTRODUCTION TO VISUAL BASIC PROGRAMMING

colon,:

comments

comparison operators
compile error

condition

default property
destructive read-in
Editor tab

Editor Format tab
embedded parentheses
empty string

Enabled property
EndIf

End keyword

End Sub

event

event-driven programming
event monitoring

event procedure

event type

explicit declaration
False keyword
floating-point number
focus

Full Module View
general declaration
identifier

If /Then structure
implicit declaration
InputBox function
Integer division operaton
Integer keyword
keyword

Let keyword
line-continuation character,
Margin Indicator bar
MaxLength property
modal

modulus operatoiMod

Common Programming Errors

CHAPTER 3

negation operator,

nested parentheses

nondestructive read-in

object
Object box

OK button

operand

operator

operator precedence
Option Explicit

Options dialog

percent sigfp
Print method
Procedure box
procedure definition header
Procedure Separator
Procedure View

Require Variable Declaration checkbox
Rem

reserved word

single-line comment
statement

string

string concatenation operaigr,
Sub keyword

syntax color highlighting
syntax error
Tablndex property
Tabkey
Tab Width TextBox
text
TextBox control
Text property
True keyword
type
type declaration character
unary operator

variable
Variant

3.1 Using a keyword as a variable name is a syntax error.

3.2 Attempting to declare a variable name that does not begin with a letter is a syntax error.

3.3 Exceeding amnteger s range is a run-time error.

3.4 Attempting to use a type declaration character and keyAstdgether is a syntax error.

3.5 Itis an error to assume that the clause in a declaration distributes to other variables on the
same line. For example, writing the declarafm x As Integer ,y and assuming that
bothx andy would be declared dateger s would be incorrect, when in fact the declara-
tion would declarex to be arinteger andy (by default) to be &ariant

3.6 Expressions or values that cannot be implicitly converted result in run-time errors.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 81

3.7

3.8

3.9

3.10

3.11

3.12
3.13

Reversing the order of the symbols in the operators>= and<= as in><, => and=<,
respectively, are syntax errors.

Writing a statement such as= y = 0 and assuming that the variableandy are both

assigned zero, when in fact comparisons are taking place. This can lead to subtle logic errors.
If variable names are misspelled when not uSlpgjon Explicit , a misspelled variable
name will be declared and initialized to zero, usually resulting in a run-time logic error.
Splitting a statement over several lines without the line-continuation character is a syntax
error.

Not preceding the line-continuation character with at least one white-space character is a
syntax error.

Placing anything, including comments, after a line-continuation character is a syntax error.
Splitting an identifier or a keyword is a syntax error.

Good Programming Practices

3.1

3.2

3.3

3.4

3.5

3.6
3.7
3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15

3.16

Prefix the name o€ommandButton s withcmd. This allows easy identification @fom-
mandButton s.

Comments written to the right of a statement should be preceded by several spaces to en-
hance program readability.

Visual Basic statements can be long. You might prefer to write comments above the line(s)
of code you are documenting.

Precede comments that occupy a single line with a blank line. The blank line makes the com-
ment stand out and improves program readability.

Indent statements inside the bodies of event procedures. We recommend three spaces of in-
dentation. Indenting statements increases program readability.

Prefix the name ofextBox es withtxt to allow easy identification ofextBox es.

Begin each identifier with a lowercase letter. This will allow you to distinguish between a
valid identifier and a keyword.

Choosing meaningful variable names helps a program to be “self-documenting.” A program
becomes easier to understand simply by reading the code rather than having to read manuals
or having to use excessive comments.

Explicitly declaring variables makes programs clearer.

Placing extra parentheses in an expression can make that expression clearer.

Refer to the operator precedence chart when writing expressions containing many operators.
Confirm that the operators in the expression are performed in the order you expect. If you are
uncertain about the order of evaluation in a complex expression, use parentheses to force the
order, exactly as you would do in algebraic expressions.

If you prefer to place declarations at the beginning of a procedure, separate those declarations
from executable statements in that procedure with one blank line to highlight where the dec-
larations end and the executable statements begin.

Always place a blank line before and after a group of declarations that appears between ex-
ecutable statements in the body of a procedure. This makes the declarations stand out in the
program and contributes to program readability.

Write eachf /Then structure on multiple lines using tBed If to terminate the condition.

Indent the statement in the body of theéThen structure to highlight the body of the struc-

ture and to enhance program readability.

Explicitly writing the default property improves program readability. Since default proper-
ties are different for most controls, omitting the property name can make the code more dif-
ficult to read.

Even though Visual Basic provides the colon to combine multiple statements on a single line,
writing only one statement per line improves program readability.

82 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Testing and Debugging Tips

3.1 As Visual Basic processes the line you typed, it may find one or more syntax errors. Visual
Basic will display an error message indicating what the problem is and where on the line the
problem is occurring.

3.2 Syntax color highlighting helps the programmer avoid using keywords accidentally.

3.3 Force variable declarations by usi@gtion Explicit

Software Engineering Observation

3.1 Even though multipl&nd statements are permitted, use only one. Normal program termina-
tion should occur in only one place.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Keywords begin the body of an event procedure and keywords end
the body of an event procedure.
b) When a value is placed into a memory location, it is known as read-in.

¢) Whatarithmetic operation(s) is/are onthe same level of precedence as multiplication?

d) When parentheses are nested in an arithmetic expression, which set of parentheses is
evaluated first?

e) A location in a computer's memory that may contain different values at various times
throughout program execution is called a

f) By default,Integer variables are initialized to the value

3.2 State whether each of the followingiige or false If falsg explain why.

a) A comment’s text is printed on the form as the comment is executed.

b) TheRemstatement stores a string in the Visual Basic varigblmark.

c) Option Explicit forces explicit variable declaration.

d) Allvariables, when declared explicitly, must be given a data type either by usig the
keyword or by using a type-declaration character (if the data type has one).

e) The variableaumber andNuMbEr are identical.

f) Declarations can appear almost anywhere in the body of an event procedure.

g) The modulus operatdvlod, can be used only witlnteger operands. Attempts to use
floating-point numbers (e.g., 19.88, 801.93, 3.14159, etc.) are syntax errors.

h) The arithmetic operators / and\ all have the same level of precedence.

i) Visual Basic syntax always requires arithmetic expressions to be enclosed in parenthe-
ses—otherwise, syntax errors occur.

3.3 Fill in the blanks in each of the following:
a) The property limits the number characters input ifextBox .
b) The default data type is .
c) The character is the symbol for the string concatenation operator.
d) When a value is read out of a memory location, it is known as readout.

3.4 Write a single statement to accomplish each of the following:
a) Explicitly declare the variable$, ventor andnumto be of typdnteger
b) Assign ‘Hello! "to theLabel IblGreeting
c) Combine the following three lines into a single line:
" Initialization
total% = 0
counter% =1

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 83

d) Assign the sum of, y andz to the variablesum. Assume that each variable is of type
Integer

e) Decrement the variabt®unt by 1, then subtract it from the varialitgal , and as-
sign the result to the variahle Assume all variables to be of tyjregeger

f) Assign the product of thimteger variables , i , m e ands to the variabley.

g) Calculate the remainder aftatal is divided bycounter and assign the result to
remainder . Assume the variables to be of tyipgeger

h) Assign the value returned from functibrputBox to the variablaiserinput . The
functioninputBox should display the messaggériter your data .” The Input-
Box's title bar should displayData Input .” Assume the variableserinput to be
of typelnteger

3.5 Write a statement or comment to accomplish each of the following:

a) State that a program will calculate the product of thmégger s.

b) Print the messagefinting to the form ” on the form using th€rint method.

c) Force variable declarations.

d) Compute thénteger average of the thrdateger s contained in variables y and
z, and assign the result to thteger variableresult

e) Print on the formThe product is " followed by the value of thinteger variable
result

f) Compare thdnteger variablessuml andsumz2 for equality. If the result is true, set
thelnteger variableflag to 76.

3.6 Identify and correct the error(s) in each of the following statements:
a) Dim False As Integer
b) Dim variable, inputValue As Integers
c) Integer oscii Rem declare variable
d) a+b=c ’'adda, b and assign resultto c
e) d=tModulusr + 50
f) variable =-65800 ’variable is of type Integer
g) " Change BackColor property’s value
h) If (x>y)
frmMyForm.Print x
i) Dim triplett As Integer, picks As Integer, End As Integer
j) triplett = picks =10 ’ Initialize both variables to 10
k) x:y=oldvalue Rem assign oldValue to both x andy

3.7 Given the equatioh = 8¢ — n which of the following, if any, are correct statements for this
equation?

a) b=8*e"5-n

b) b=(8*e)”5-n

c) b=8*(e”5)-n

d b=8*e~(5-n)

e) b=(8*e)"((5)-n)

f) b=8*e*e”4-n
3.8 State the order of evaluation of the operators in each of the following statements, and show
the value ofmafter each statement is performed. Assum@ be arinteger variable.

a) m=7+3*6\2-1

b) m=2Mod2+2*2-2/2

c) m=8+10\2*5-16\2

d m=-5-8Mod4+7*2"2+2)

e) m=10Mod371"2-8

84 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Answers to Self-Review Exercises

3.1 a) Sub, End Sub. b) destructive. c) floating-point division)(d) innermost. €) vari-
able. f) zero.
3.2 a) False. Comments are not executable statements; nothing is printed.
b) FalseRemis simply another way of writing a comment.
c) True.
d) False. If a variable is not explicitly given a type, then it is given the default data type of
Variant
e) True. Visual Basic is not case-sensitive.
f) True.
g) False. Floating-point numbers are roundelhteger s beforeModis performed.
h) False. Multiplication’() and floating-point divisior/() have the same precedenite.
teger division () has a lower precedence.
i) False. Visual Basic does not require all expressions to use parentheses.
3.3 a) MaxLength . b)Variant . c) ampersand&. d) nondestructive.
3.4 a) Dim cj As Integer, ventor As Integer, num As Integer
b) IblGreeting.Caption = "Hello!"
c) total% =0:counter% =1 'lInitialization
d) sum=x+y+z
e) u =total - (count - 1)
f) g=r*i*m*e*s
g) remainder = total Mod counter
h) userlinput = InputBox("Enter your data", "Data Input”)
3.5 a) 'This program will calculate the product of three integers
b) Print "printing to the form"
c) Option Explicit 'In general declaration
d) result=(x+y+2)/3
e) Print "The product is " & result
f) If suml =sum2 Then
flag =76
End If
3.6 a) False isakeyword and may not be used as an identifier. Use a non-keyword as the vari-
able name.
b) Integers should bdnteger
c) A variable cannot be declared this way. Correctiim oscii As Integer
d) The variable storing the result of the assignmenti{ust be the left operand of the as-
signment operator. The statement should be rewritterras + b
e) Modulus should beMod
f) The number —65800 is out of range forlateger . The value being assigned should
be in the range —32,768 to 32,767.
g) The double quotes should be single quotd®ewnto form a comment.
h) TheThen keyword is missing and the statement should either be contained on one line
or be terminated bind If .
i) End is a keyword and may not be used as an identifier.

)

A comparison is being made rather than an assignment. Each assignment should be done
separately.

triplett = 10

picks = 10

CHAPTER 3

3.7

3.8

k) Invalid syntax. Each assignment must be done separately.

x = oldValue
y = oldValue

a,c,f

a) m=7+3*6\2-1
m=7+18\2-1
m=7+9-1
m=16-1
m =15

b) m=2Mod2+2*2-2/2
m=2Mod2+4-2/2
m=2Mod2+4-1
m=0+4-1
m=4-1
m=3

c) m=8+10\2*5-16\2
m=8+10\10-16\2
m=8+1-16\2
m=8+1-8
m=9-8
m=1

d) m=-5-8Mod4+7*(2"2+2)

m=-5-8Mod4+7*(4+2)
m=-5-8Mod4+7*6
m=-5-8Mod 4 + 42
m=-5-0+42
m=-5+42
m = 37

e) m=10Mod37172-8
m=10Mod3"1-8
m=10Mod 3-8
m=1-8
m=-7

Exercises

3.9

Identify and correct the error(s) in each of the following statements:
has been set.

a) Assume thaDption Explicit

' Event code for procedure

Private Sub cmdDisplay_Click()

valuel =5 :value2 =10

If valuel > value2 Then
Print valuel
End If
End Sub

b) Assume thaOption Explicit

INTRODUCTION TO VISUAL BASIC PROGRAMMING

has not been set.

85

86

3.10

3.11

3.12

INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

' Event code for procedure
Private Sub IblGreeting_Click()
LowlVal =8

' Display the value in IblGreeting's Caption property
IbIGreeting = LowlVal
End Sub

¢) animalName = "Giant " Cat "Parrot" ' Concatenate strings

d) thislsAnincrediblyLongVariableNameOf45Letters As Integer

e) Assume that thimteger variablesc andj are declared and initialized 47 and55,
respectively.

Dim x As Integer

If c =< Then
X=79
frmMyForm.Print x
End If

f) Assume that the variableg pcm andgp are declared dsteger s.

' Executable statement
g=76;qp= 'Hard return after =
78 ; pcm =61

Write a single statement or line that accomplishes each of the following:

a) Print the messag¥isual Basic 6!!!!" on the form.

b) Assign the product of variablesdth22 andheight88 to variablearea51 .

c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-
ument a program).

d) Calculate the area of a circle and assign it torttegyer variablecircleArea . Use
the formulaarea = (1r), the variableadius and the value 3.14159 for

e) Concatenate the following two strings using the string concatenation operator and assign
the result td_abel IblHoliday 'sCaption :"Merry Christmas" and" and
a Happy New Year"

Fill in the blanks in each of the following:

a) are used to document a program and improve its readability.

b) A statement that makes a decision is

¢) Calculations are normally performed by statements.

d) The statement terminates program execution.

e) The method is used to display information to the form.

) A is a message to the user indicating that some action is required.

State which of the following arteue and which ardalse If false explain why.

a) Integer division has the same precedence as floating-point division.

b) The following are all valid variable namesinder_bar_ ,m928134, majesticl2 ,
her_sales , hisAccountTotal , cmdWrite , b, creditCardBalance1999 ,
YEAR_TO_DATE_VolLs__LiSt__

c) The statemergquareArea =side ~ 2 is a typical example of an assignment state-
ment.

CHAPTER 3 INTRODUCTION TO VISUAL BASIC PROGRAMMING 87

d) A valid arithmetic expression with no parentheses is evaluated from left to right regard-
less of the operators used in that expression.

e) The following are all invalid variable name&juarts , 1988, &67h2, vols88 ,
*true_or_FALSE ,99 DEGREES this , Then.

f) Visual Basic automatically generates the beginning and end code of event procedures.

3.13 Given the following declarations, list the type for each variable declared.
a) Dim traveler88 As Integer
b) number% =76
c) Dim cars As Integer, trucks
d) Dim touchDowns, fieldGoals As Integer
e) portNumber =80 ' Implicit declaration

3.14 Given the equatiop = axC + 7, which of the following, if any, are correct statements for this
equation?

a) y=a*(x"3+7)

b) y=(a*x)"3)+7

C) y=(a*x*x*x+7)

d) y=(a*(x*(x*x))+7)

e) y=(a*(x*x)"2)+7

) y=@*x)*x)* X +(7)

3.15 State the order of evaluation of the operators in each of the following statements, and show
the value ok after each statement is performed. Assunte be arinteger variable.

a) x=(3*9*(3+(9*%3/(3))))

b) x=1+2*3-4/4-12\6*6

c) x=((10-4*2)\2+(13-2*5))"2

d) x=82Mod3+2/2--3

€) x=-2+7.4\5-6/4Mod 2

3.16 Which, if any, of the following statements contain variables involved in destructive read-in?
a) myVariable = txtTextBox.Text
b) V=O+L+S+8*8
c) Print "Destructive read-in"
d) Print"a=28"
e) Printx =22
f) Print userName

3.17 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer "nothing.” Assume that 2 andy = 3.

a) Print x

b) Print-y~2

c) Printx +x

d) Print"x ="

e) txtTextBox.Text="x +y"

f) z=x+y

g) Printx+y*472/4&"is the magic number!"

3.18 Write a program that inputs three differémteger s using functiodnputBox and prints
the sum, the average, the product, the smallest and the largest of these numbers on the form using
Print . Use only the single-selection version of théThen statement you learned in this chapter.

88 INTRODUCTION TO VISUAL BASIC PROGRAMMING CHAPTER 3

Provide arExit button to terminate program execution. (Hint: ERcimt statement is similar to
Print "Sum is "; sum . The semicolon;() instructs Visual Basic to print the variable's value
immediately after the last character printed.)

3.19 Write a program that reads in the radius of a circle dstager and prints the circle's
diameter, circumference and area to the form usinBriné method. Do each of these calculations
inside aPrint statement. Use the following formulaisg the radius)diameter = 2 circumference

= 21T, area =Tr2. Use the value 3.14159 for (Note: In this chapter, we have discussed amy

teger variables. In Chapter 4 we will discuss floating-point numbers (i.e., values that can have dec-
imal points and data tyg&ingle).

3.20 Enhance Exercise 3.19 by displaying the diameter, circumference and babealirs.

3.21 Write a temperature conversion program that converts a Fahrenheit temperature to a Celsius
temperature. ProvideTextBox for user input and babel for displaying the converted tempera-

ture. Provide #nput button to read the value from tifiextBox . Also provide the user with dxit

button to end program execution. Use the following formk&lsius = 5/ 9 x (Fahrenheit — 32)

3.22 Enhance Exercise 3.21 to provide a conversion from Fahrenheit to Kelvin. Display the con-
verted Kelvin temperature in a secdrabel . Use the formulakelvin = Celsius + 273.

3.23 Modify Exercise 3.21 to use functidnputBox for input.

