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Abstract: In recent years, the computational power of modern processors has been increasing mainly because of 

the increase in the number of processor cores. Computationally intensive applications can gain from this trend only if 

they employ parallelism, such as thread-level parallelization. Geometric simulations can employ thread-level 

parallelization because the main part of a geometric simulation can be divided into a subset of mutually independent 

tasks. This approach is especially interesting for acoustic beam tracing because it is an intensive computing task. This 

paper presents the parallelization of an existing beam-tracing simulation composed of three algorithms. Two of them 

are iterative algorithms, and they are parallelized with an already known technique. The most novel method is the 

parallelization of the third algorithm, the recursive octree generation. To check the performance of the multi-threaded 

parallelization, several tests are performed using three different computer platforms. On all of the platforms, the multi-

threaded octree generation algorithm shows a significant speedup, which is linear when all of the threads are executed 

on the same processor. 
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1. INTRODUCTION 

 

Acoustic simulations are computationally intensive 

applications. Recent interactive auralizations compute the 

impulse response for a moving source and listener and 

even account for changing geometry [1-6]. Then, they 

perform auralization using the convolution of the room 

impulse response and the excitation audio signal. Another 

type of acoustic simulation computes the spatial 

distribution of the sound pressure, the reverberation time, 

the speech transmission index and other parameters, while 

including an ever-increasing number of sound wave 

effects. In ray-tracing and hybrid simulations, diffuse 

reflections and diffraction are now generally incorporated 

[7, 8], and recently, a beam-tracing simulation has been 

developed that includes refraction [9]. In the case of 

complex geometry and multiple sound sources, these 

simulations require a significant amount of computing 

power. 

The increase in the computing demands of acoustic 

simulations must be met by an increase in the computing 

power of the system that performs the simulation. In 

recent years, the clock frequency of processors has not 

increased because of physical constraints, but the 

computational power of modern processors is increasing 

because manufacturers are multiplying the number of 

cores in the processor [10]. To use an increased number 

of cores, one must resort to parallelization. There are 

three ways in which a modern acoustic simulation can be 

parallelized:  

(1) by computing with clusters or grids of computers 

or processors [11]; 

(2) by transferring parts of the simulation to a 

graphical processing unit (GPU), which has a 

large number of simple parallel cores [2]; 

(3) by using thread-level parallelization, which 

converts a single-threaded simulation to a multi-

threaded simulation that can execute on a 

modern multicore central processor unit (CPU).  

In some implementations, a hybrid GPU+CPU 

parallelization is used [5, 12]. 



Transforming an acoustic simulation to run on a 

cluster or a grid of computers would provide an enormous 

amount of processing power, but doing so would require a 

fundamental change in the code of the simulation and 

even a change in the programming language that is used. 

Additionally, such a simulation would require a 

substantial amount of time for communication between 

the cluster or grid nodes to synchronize the work because 

communication would be performed externally, over the 

network, which is much slower than the internal CPU or 

GPU communication. 

Recently, simulations that run on a GPU [2, 13] 

have become common. Modern GPUs have large numbers 

of processing units; as a result, they provide an affordable 

yet very powerful platform for computationally intensive 

tasks. A recent implementation in which acoustic ray 

tracing was performed in parallel on a GPU and 

auralization was performed on a CPU has proven that 

auralization at interactive rates is possible, even for a 

highly complex changing geometry [5]. 

The drawback of this approach to parallelization is 

that it requires rewriting most of the simulation code 

because GPUs have proprietary programing interfaces 

such as CUDA or OpenCL. Additionally, the processor 

cores of the GPU have a limited number of registers and 

operations compared to CPU processor cores. This 

constraint imposes limitations on the programming 

methods, such as recursion, that are used in simulations.  

The authors have recently developed a beam-tracing 

method with refraction [9]. This method is based on the 

geometrically complex process of beam tracing, and it 

calculates not only the reflection but also the refraction of 

the sound. Beam tracing in general is a computationally 

intensive method, and in the past, different acceleration 

techniques have been used to speed up simulation. The 

accelerated beam-tracing algorithm [6] uses several 

methods to accelerate the calculation, and it has 

succeeded in achieving interactive rates for scenes with 

moving sources in the case of simple geometry. This 

method is similar to our beam-tracing method in that it 

has a preprocessing phase in which spatial data structures 

are created. In the preprocessing phase, the method 

calculates the beam tree without any occlusion tests, 

while in the running phase, it employs fail-plane and skip-

sphere accelerating techniques. However, the accelerated 

beam-tracing algorithm does not use parallelism even 

though (because beams are independent of each other) the 

beam-tracing method is a highly parallelizable technique. 

The beam tracing with refraction method that we 

have developed is computationally intensive, which 

motivated us to parallelize the simulation to speed up 

processing. When considering which approach to use, we 

decided to use thread-level parallelization. The method is 

composed of two iterative algorithms and one recursive 

algorithm. We used a well-known method to parallelize 

the two iterative algorithms, and the main novelty in our 

work is the method used to parallelize the recursive octree 

generation algorithm.  

The remainder of this paper is structured as follows. 

Section 2 presents previous work in the field of multi-

threading in geometrical simulations. Our novel method 

of parallelizing the recursive octree generation algorithm 

is presented in Section 3. In Section 4, the results of 

testing several aspects of our multi-threading algorithms 

are presented. Finally, the conclusions are given in 

Section 5. 

 

2. PREVIOUS WORK 

 

Thread-level parallelization exploits the features of 

the operating system to execute several threads 

simultaneously. This approach was originally developed 

to enable different programs to run concurrently on a 

single core processor by using time sharing. However, 

thread-level parallelization soon evolved and was then 

used for the parallel execution of a single program on a 

multicore processor. Such a multi-threaded program starts 

several working threads, which share the same address 

space. The workload distribution is performed by the 

master thread, which starts, stops and synchronizes 

working threads. If different working threads that run 

simultaneously write and read to the same data structure, 

then a synchronization mechanism must be established.  

The complexity of the thread-level parallelization 

and its efficiency are governed by Amdahl’s law [14]. In 

any parallel algorithm, there is always a part of the code 

that cannot be parallelized. Amdahl’s law states that the 

smaller the amount of this type of code (the serial part of 

the code), the more efficiently the code with the same 

number of parallel threads will perform. Thus, the main 

issue in designing an efficient multi-threaded algorithm is 

to maximize the parallel part of the code and to minimize 

the serial overhead. In addition to the work that the master 

thread performs in preparing and managing the threads, 

the overhead includes thread communication and 

synchronization as well as thread idle times that result 

from sub-optimal load balancing and redundant 

computations. The measurements that we performed and 

presented in section 4.2 show that the multi-threading 

octree generation algorithm has a slower speedup than the 

other two iterative algorithms. This result occurs because 

the system has a large amount of serial code in the master 

thread that prepares the root node of the octree and that 

cannot be parallelized. 

The operating system decides which thread will be 

run on which processor core. If there are more threads 

than there are cores in the processor, then the operating 

system uses time sharing and switches the execution of 

several threads on the same core. Thus, parallelization of 

the simulation would result in a speedup only when there 

is at least the same number of cores as there are threads 

that run in parallel. This arrangement is clearly shown in 

section 5, where even with hyper-threading, there was no 

speedup when the number of threads was greater than the 

number of physical cores on the machine. 

Geometric simulations can employ thread-level 

parallelization because the main part of the geometric 

simulation can be divided into a subset of mutually 

independent tasks. A successful example of such 

parallelization is the ray tracing visualization and 



auralization that has been recently developed [12, 15], as 

well as FastV [16]. FastV uses 4-sided volumetric frusta 

for conservative, from-point visibility computation and 

geometric sound propagation simulations. The algorithm 

is highly parallelizable because the calculations for each 

frustum can be performed independently. The results that 

each thread computes are combined to compute the final 

potential visibility set. The visibility computation 

technique has been implemented and tested on a 16-core 

computer, and it has been shown to be almost linear, with 

a 16 times speedup for simpler models and a 13 times 

speedup for more complex models. 

The most difficult part of the thread-level 

parallelization is synchronization of the threads. The most 

efficient and robust multi-threaded application is an 

application in which the threads can work independently 

of each other. In a geometric simulation, such as the ray-

tracing, the simulation traces the propagation of the rays 

through the simulated model. Rays do not depend on each 

other and instead depend only on the model geometry. 

Thus, the ray-tracing algorithm is a highly parallelizable 

algorithm [1, 15]. In geometric simulations, the 

synchronization between working threads, which allows 

one thread to change the global state or change the same 

data, is minimal or even nonexistent [11]. We have 

decided to use the standard master thread-working thread 

model without any synchronization, which is 

accomplished by using independent data queues. 

Different implementations of thread-level 

parallelization employ threads differently. Some 

simulations have a fixed number of threads that are 

dedicated to specific tasks. Taylor et al. [1], in RESound, 

use one thread to calculate first-order specular reflections, 

seven threads to calculate the next three orders of specular 

reflections and two orders of diffraction, and finally seven 

threads to calculate the diffuse reflections. Other 

simulations, such as Manta, which was designed by 

Bigler et al. [11], use dynamic load-balanced multi-

threading. In this method, each thread obtains tasks 

dynamically, depending on the current state of the 

simulation. Such a method often employs threads to 

process ray packets rather than using individual rays to 

decrease the overhead. We have decided to use the shared 

task queue and dynamical thread task management. 

The approach we present in this paper uses a lock-

free conservative local mechanism, where the work thread 

manages the task queue and each thread has an 

independent local data structure for its results. By using 

this approach, we avoid mutual exclusion locks and 

synchronization issues. The research community has 

proven that this mechanism is the fastest method [12]. We 

use this approach even in our multi-threading version of 

the recursive octree generation algorithm, where we have 

transformed the recursive method to the iterative method 

with the task queue. 

Geometric simulations often use spatial data 

structures such as Binary Space Partition (BSP) trees and 

k-dimensional (kd) trees [11] to speed up geometric 

operations. The creation and the processing of such 

structures employ recursive algorithms. Thread-level 

parallelization is easily employed on iterative algorithms, 

but adapting the recursive algorithm to perform in a 

multi-threaded manner poses a substantial challenge [17].  

Several papers present parallel octree algorithms 

that run on cluster of computers. Pombo [18] and Tu [19] 

present parallel octree algorithms used for the FEM 

simulation. The performance of Octor simulation 

developed by Tu [19] shows relatively low speedup – 

only 250% for 16 parallel processors, but it can scale up 

to 2000 processors. Harihan and Aluru [20] have achieved 

better results with their algorithm for creation and 

querying of the compressed octree. They got the speedup 

of 400% for eight threads, and 666% for 16 threads. Our 

method has achieved better speedup as shown in section 

4, but also the limitation when it performs on more than 

one processor. 

In the following section, we present our method for 

parallelizing the octree generation recursive algorithm. 

 

 

3. MODELS AND METHODS 

 

This paper presents the multi-threaded version of 

the beam-tracing method. Acoustic beam tracing can 

benefit from thread-level parallelization because it is a 

computing-intensive task. This task is suitable for being 

parallelized because the traced beams are independent of 

each other.  

The beam-tracing method comprises three main 

algorithms [9]: 

 

1. the beam tracing 

2. the creation of the octree of beams  

3. the raster generation 

 

where the first and the third phases are iterative 

algorithms, and the second phase is the recursive 

algorithm. 

The first phase performs the beam tracing. Beam 

tracing is initiated by the creation of 20 initial beams, 

using an icosahedron with the center in the location of the 

sound source. Each of 20 initial beams is then divided 

according to the geometry of the surface that it hits. From 

the divided incoming beams, reflected and refracted 

beams are created.  

In the second phase, all of the beams that result 

from the beam tracing are placed into the octree. This task 

is performed to speed up the spatial search of the beams, 

which is performed in the last phase. 

In the third and last phase, the spatial distribution of 

the levels of sound intensity is created in the form of a 

raster of points. For each point in the raster, the octree is 

filtered to obtain those beams that contain the point. The 

intensity level of the sound for the point is then calculated 

by adding the level of intensity of each beam in the 

position of the point.  

To parallelize the two iterative algorithms, we have 

used an already known method that has a set of symmetric 

working threads; these threads receive their tasks from the 

shared task queue.  



For the recursive algorithm, we first attempted a 

naive approach in which we parallelized only the first 

level of the octree subdivision. However, because of load 

balance problems, we changed our approach and used full 

parallelization in which each level of subdivision is added 

to the task queue and run in parallel.  

In the remainder of this section, we will describe 

how we converted to the multi-threaded form, first for the 

two iterative algorithms and then for the recursive 

algorithm. 

 

3.1. Two iterative algorithms 

 

The two iterative algorithms that present the first 

and third phase of the beam tracing are parallelized in a 

similar fashion. Both algorithms have two procedures: the 

control procedure, which distributes the work, and the 

thread procedure, which performs the processing. 

The control procedure begins with the creation of 

the task queue. Tasks are initial beams in the case of beam 

tracing and are raster points in the case of raster 

generation. The master thread then starts all of the 

working threads simultaneously by giving each working 

thread one task from the shared task queue.  

The central part of the control procedure is a loop in 

which the algorithm restarts the thread that has finished 

its task. When one thread finishes processing, the master 

thread restarts it and gives it a new task. This loop repeats 

until there are no tasks left in the task queue.  

Then, the final loop waits for all of the threads to 

finish processing and terminates the threads. Although the 

master thread distributes tasks from the shared task queue, 

the results of each working thread are stored in a local 

result queue. For each terminated thread, the results are 

aggregated. In the case of beam tracing, the finished 

beams of each thread are moved to the common finished 

beams list, and in the case of raster generation, the raster 

points are moved to the unified raster point list.  

 

3.2 Multi-threaded generation of the beam octree 

 

The second phase of the beam-tracing simulation is 

the recursive algorithm that generates the octree of beams. 

The octree contains beams from the beam-tracing phase, 

and it is used to speed up the next (third) phase –

calculation of the results.  

 
process_octree_node(node n, beams list BL) 

 create eight subspace nodes SN[1] .. SN[8] 

 create eight node beam lists NBL[1] .. NBL[8] 

 for each node number i in SN[1] .. SN[8] 

  for each beam b in BL 

   if node number i contains b  

    push b in NBL[i] 

  if NBLi contains more beams than threshold 

   process_octree_node(SN[i], NBL[i]) 

 

Fig 1 The single-threaded recursive octree algorithm 

 

The original recursive algorithm is presented in 

Figure 1. The space of the processed node is first divided 

into eight equal subspaces, and for each subspace, a new 

node is created. For each new node, the list of beams is 

created, and all of the beams that are located in the node 

subspace are added to it. If the number of beams in the 

beam list of the sub-node is below the predefined 

threshold, then that sub-node is not processed further. For 

those nodes that have more beams than the predefined 

threshold, the divide node procedure is called recursively. 

Finally, when all of the sub-nodes reach the threshold, the 

octree is finished, and it contains all of the beams in its 

leaves.  

This recursive algorithm cannot be easily 

transformed into multi-threading. Let us consider the 

cause of the problem: suppose that we have a processor 

that has four cores that can run four threads 

simultaneously. The algorithm starts with the procedure 

for the processing of the root node of the octree, which 

contains all of the beams. This procedure runs in the first 

thread and creates eight branch nodes, which contain 

eight subspaces. The simulation then starts new threads, 

with one thread for the recursive dividing procedure of 

each branch node. After three threads for the first three 

branch nodes are started, the simulation runs out of 

available threads. The thread that is processing the root 

node will not finish until all of the branch nodes are 

processed. Three branch node threads cannot finish 

because they cannot start processing their sub-nodes 

because there are no threads available. Five remaining 

branch nodes of the root node also cannot be processed 

for the same reason. Thus, the program comes to a stall. 

If the tree is processed in a depth-first fashion 

instead, the same problem occurs. The program can 

process a maximum of three levels in depth. If the depth 

of the tree is greater than the maximum number of 

threads, processing will stop.  

To solve this problem, we have substituted the 

recursive octree generation algorithm with an iterative, 

breadth-first approach. The first, naive version of the 

iterative algorithm is shown in Figure 2. 

 
divide the root node into an array of eight  

 subspace nodes 

push all nodes in the subspace node queue (SNQ) 

for i equals 1 to max number of threads 

   pop one subspace node n from SNQ 

   start thread i with process_octree_node(  

    n, beams list BL) 

next i 

while the SNQ is not empty and there are working 

 threads 

   if STQ is not empty and there is available 

    thread i 

      pop one subspace node n from SNQ 

      start thread i with process_octree_node(  

       n, beams list BL) 

   endif 

   if thread i has finished 

      stop thread i 

   endif 

repeat 

 

Fig 2 The naive multi-threaded iterative algorithm 

 

In this algorithm, only the first level of the octree 

subdivision is parallelized. The algorithm in the first loop 



runs n threads to work in parallel on the first subdivisions, 

where n is the maximum number of threads. If n is less 

than 8, then some of the subspace nodes will not be 

processed, and the next loop processes the remaining 

subspace nodes as some of the threads finish their job. 

Each subspace node is processed to completion in one call 

to the process_octree_node procedure from Figure 1.  

This approach is simple because only the topmost 

level of the octree is parallelized, but it suffers from load 

balance problems. If the number of available threads is 

more than 8, then the excess threads will not be utilized. 

Additionally, some of the subspace nodes could require 

much more work than others, which could cause the other 

threads to be idle while the busiest nodes continue 

processing (Figure 3a). The measurements confirmed this 

weakness, which is shown in Figure 8 in section 4.2. 

To avoid load balance and performance issues from 

the naive approach, we decided to use an iterative 

algorithm that stores newly generated tasks in a shared 

task queue, hoping to achieve better load balancing and a 

shorter time for execution (Figure 3b). 

 

 
a) 

 

 
b) 

 

Fig 3 The naive (a) and task queue (b) multi-threading 

octree algorithm 

  

The first step in creating the multi-threaded task 

queue iterative algorithm was to create the single-

threaded iterative version of the algorithm, which is 

shown in figure 4. 

This algorithm starts with the creation of the root 

node and its accompanying list of contained beams. The 

root node and the beam list are pushed to the octree node 

queue (OTQ) and the beam list queue (BLQ), respectively. 

These two structures will be used to avoid recursive calls 

by storing new tasks for the iteration. The algorithm then 

enters the loop. Inside the loop, one node and its beam list 

are popped from the OTQ and BLQ. If the list contains 

more beams than the threshold, then the popped node and 

the list are processed with the process_octree_node 

procedure. This procedure returns two arrays: one array 

contains eight new subnodes SN[8], and the other array 

contains eight subnode beams lists NBL[8]. The nodes 

and lists from these arrays are then added to the queues 

OTQ and BLQ, respectively. This action completes one 

iteration of the loop. The loop runs as long as OTQ and 

BLQ are not empty.  

 
create root node rn and push it in octree node 

 queue (OTQ) 

push beams list of all beams in beam list queue 

 (BLQ) 

while the OTQ is not empty 

 pop one octree node (n) from OTQ 

 pop one beam list (bl) from BLQ 

 if bl contains more beams then treshold 

  process_octree_node( n, bl, SN, NBL ) 

  push all nodes from SN to OTQ 

  push all beam lists form NBL to BLQ 

 endif 

repeat 

 

process_octree_node(node n, beams list BL, nodes 

SN[8], beam lists NBL[8]) 

 create eight subspace nodes SN[1] .. SN[8] 

 for each node number i in SN[1] .. SN[8] 

  for each beam b in BL 

   if node SN[i] contains b  

    push b in NBL[i] 

 

 

Fig 4 The single-threaded iterative algorithm 

 

From this single-threaded iterative algorithm, we 

derived the multi-threaded iterative algorithm that is 

shown in Figure 5.  

 
for i equals 1 to max number of threads 

   create array of arrays of subspace nodes 

    AAS[i] 

   create array of arrays of node beams lists 

    AAB[i] 

next i 

create root node rn and push it in octree node 

 queue (OTQ) 

push beams list of all beams in beam list queue 

 (BLQ) 

while the OTQ is not empty or there are working 

 threads 

   if OTQ is not empty and there is available 

    thread i 

      pop one octree node n from OTQ 

      pop one beam list bl from BLQ 

      if bl contains more beams than treshold 

         start thread i with thread_procedure(  

          n, bl, AAS[i], AAB[i] ) 

      endif 

   endif 

   if thread i has finished 

      push all nodes from AAS[i] to OTQ 

      push all beam lists form AAB[i] to BLQ 

      stop thread i 

   endif 

repeat 
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thread_procedure(node n, beams list BL, nodes 

SN[8], beam lists NBL[8]) 

 create eight subspace nodes SN[1] .. SN[8] 

 for each node number i in SN[1] .. SN[8] 

  for each beam b in BL 

   if node SN[i] contains b  

    push b in NBL[i] 

 

Fig 5 The multi-threaded iterative algorithm 

 

The first step of the algorithm is to create the two-

dimensional array of subspace nodes AAS and the two-

dimensional array of node beam lists AAB. These two data 

structures are used to store the array of subnodes SN and 

the array of subnode beams NBL, which are the result of 

each thread node’s processing procedure. In the single-

threaded algorithm, only one pair of arrays for the 

subnodes and beams lists (SN[8] and NBL[8]) are 

sufficient, but in the multi-threaded version, several 

arrays are required, one for each thread. The capacity (of 

the second dimension) of these arrays is the maximum 

number of threads that the simulation can run. These data 

structures ensure that every thread has its own data 

structures, which avoids mutex and synchronization 

problems. 

After these arrays are created, the root node is 

processed in the same manner as in the single-threaded 

iterative algorithm, following the loop that processes the 

node runs while there are still unprocessed nodes and 

while all of the threads are not finished. The first part of 

the loop checks whether there are nodes that are waiting 

in the OTQ and whether there is a free thread available. If 

both conditions are met, then one node is popped from the 

queue OTQ, and a single beam list is popped from the 

BLQ. If the number of beams of the node is larger than 

the threshold, the node is processed. Processing of the 

node is performed by starting a new worker thread and 

calling the thread node processing procedure, which 

performs the same job as the single-threaded procedure.  

The second part of the loop checks whether there 

are any threads that have finished processing. If so, all of 

the sub-nodes and lists created by this thread are places on 

the node and beam list queues, and the thread is stopped. 

The loop stops when all of the nodes have been 

processed and when all of the threads have finished their 

job. 

This algorithm cannot run into a deadlock similar to 

the recursive multi-threaded algorithm because the 

processing of one node is independent of the processing 

of the other nodes. Additionally, each thread has a 

separate data structure; as a result, the synchronization of 

threads is avoided, and corruption of the data cannot 

occur. 

 

4. RESULTS 

 

Multi-threaded beam tracing was tested on three 

different computers, for which the characteristics are 

displayed in Table 1. 
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Intel Core i5 2400  4 6 3,10 8 4 

2x AMD Opteron 4171 

HE (cloud) 
6 3 2,10 32 

12 

(8) 

2x Intel Xeon E5 2660 

(hyper-threading)  
8 20 2,20 32 

16 

(32) 

 

Tab 1 Computer platforms used for testing 

 

The first computer was a standard workstation 

equipped with an Intel Core i5 processor with 4 cores and 

the Microsoft Windows 7 operating system. The second 

computer was a server with 2 AMD Opteron processors, 

each with 6 cores running Microsoft Server 2012. This 

computer was accessed through a Microsoft Azure cloud 

service, which allows only 8 logical cores to be available 

for testing because of virtualization. The third computer 

was a server with two Intel Xeon 8 core processors and 

Microsoft Server 2008. This server was accessed directly, 

which allowed all 16 cores to be available. On this 

computer, the hyper-threading test (32 logical cores) was 

performed. 

The beam-tracing simulation that was run in the 

tests was coded in C++ language, using the Microsoft 

Foundation Class (MFC) Library and the Standard 

Template Library. Multi-threading was implemented 

using MFC multi-threading functions. The simulation was 

built in the Microsoft Visual Studio 2010 development 

environment, with a 32-bit runtime. To obtain deeper 

insights into the multi-threading performance, we used the 

Microsoft Windows Performance Toolkit. 

Three models were used to test the simulation. The 

first model was a shoebox-shaped room that was 24 m 

long, 10 m wide and 8 m high with 12 triangles; the 

second model was a simple auditorium that was 30 m 

long, 30 m wide and 15 m high with 120 triangles (figure 

6a); and the third model was a multi-functional theatre 

that was 20 m long, 21 m wide and 8 meters high, with 

894 triangles (figure 6b).  

 

 
a)                                 b) 

Fig 6 Room models used in the tests: a) the simple 

auditorium (120 triangles), b) the multi-functional theatre 

(894) triangles 

 

The simulation for each of the three models traced 

approximately 100.000 beams and calculated the 

distribution of the sound intensity in the form of a raster 

with approximately 5.000 points (Figure 7). All of the 

tests for the same model produced the same distribution, 



regardless of the number of threads and computer 

platforms. 

 

 
 

Fig 7 Distribution of sound intensities produced for the 

simple auditorium model and a single sound source 

 

On the Intel Core i5 workstation with four cores, 

tests were executed with up to 4 threads. On the AMD 

Opteron virtual server, tests were executed with up to 8 

threads because there was a maximum number of 8 

logical cores that were available. On the Intel Xeon 

server, the tests were executed with a maximum of 16 

threads when hyper-threading was turned off and with a 

maximum of 32 threads when hyper-threading was turned 

on.  

In each test, the execution times were measured for 

beam tracing, for generation of the octree, and for raster 

generation. Parallel applications rely on the generation of 

rasters with the resulting sound intensity distribution. To 

minimize the influence of the operating system 

scheduling process on the results, each test was repeated 

10 times, and the results were averaged.  

 

4.1 Results of three multi-threading algorithms 

 

This section shows a comparison of the percentage 

speedup S for the two iterative algorithms and one 

recursive algorithm that comprise the multi-threaded 

beam-tracing method. The tests were performed on the 

Intel Xeon Server, and the results are presented in Figure 

8. The linear (ideal) speedup is shown with a dotted line 

for reference.  

 

  
 

Fig 8 Parallelization percentage speedup on the Intel 

Xeon server 

 

Two iterative algorithms have almost ideal speedup 

when the number of threads is below 8. The speedup of 

the octree algorithm in that part of the graph is also very 

good, just slightly lower than the ideal. The fact that the 

octree has a smaller speedup results from the existence of 

the large part of serial code being located in the beginning 

of the algorithm, where the root node of the octree is 

calculated serially. 

All three curves show a breaking point when the 

number of threads reaches 8. This feature arises because 

up to 8 threads are executed on the same processor, and 

beyond this point, the threads must be distributed between 

two processors. When the threads are not executed on the 

same processor, they cannot optimally use the processor 

cache, and subsequently the performance drops. 

 

4.2 Results of two octree parallelization approaches 

 

The remaining tests concentrate on the octree 

parallelization algorithm because it is a novel technique. 

Let us first consider which of the two parallel octree 

generation algorithms that are proposed in section 3.2 

gives better results. The first algorithm is the naive 

approach, where only the first subdivision is parallelized, 

and the second algorithm is full parallelization with the 

task queue. Figure 9 shows the results of both versions. 

This figure clearly shows the load balancing 

problems of the naive approach, which we predicted in 

section 3.2. This approach results in a speedup only for 

two of the threads, while the task queue approach results 

in a much better speedup. For this reason, we decided to 

use the task queue approach. 

 

 
 

Fig 9 Parallelization percentage speedup for the naive and 

task queue approaches in the octree generation 

 

Our task queue octree parallelization algorithm 

shows better performance than the Harihan and Aluru 

[19] compressed octree parallelization – for 8 parallel 

tasks it is 700% vs. 400%. On the other hand the speedup 

of their parallelization scales better – our speedup for 16 

threads is almost the same as for 8 threads, and their 

performance is 166% better. This is because their 

simulation runs on the cluster of computers, which 

doesn’t show the two-processor breaking point like our 

multi-core parallelization. 
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4.3 How does the complexity of the model influence 

the speedup of the multi-threading parallelization? 

 

With this test, we intended to explore how the multi-

threading octree algorithm performance scales with the 

complexity of the simulated models. Table 2 and Figure 

10 show the speedup of the octree algorithm in the case of 

the shoebox-shaped room (24 triangles), the simple 

auditorium (120 triangles) and the multi-functional theatre 

(894 triangles). All of the tests were performed on the 

Intel Xeon server with up to 16 threads. 

 

 

Tab 2 The speedup of the octree algorithm in cases with 

different model complexity 

 

 
 

Fig 10 The speedup of the octree algorithm in cases with 

different model complexity 

 

The speedup for all three models is similar until it 

reaches the breaking point of 8 threads. The speedup 

grows almost linearly with the increasing number of 

threads. After the breaking point, the slope of the speedup 

growth becomes much smaller.  

The speedup is best for the multi-functional theatre, 

although the multi-functional theatre is the most complex 

model. The auditorium speedup is somewhat lower, and 

the shoebox room speedup is the lowest. This finding 

shows that the algorithm’s performance does not decrease 

with an increase in the complexity of the models. 

 

 

4.4 A comparison of the results on different computers 

 

This section contains a comparison of the results of 

the multi-threaded octree generation algorithm using three 

different platforms: an Intel Core i5 workstation with 4 

cores; a server with 2 AMD Opteron processors, each 

with 6 cores; and a server with 2 Intel Xeon processors, 

each with 8 cores. The AMD server was running in the 

cloud and was accessed through a virtualization layer, 

which allowed only 8 logical cores to be available for 

testing. The Intel server was tested with and without 

hyper-threading, with 32 and 16 logical cores, 

respectively. Table 3 and Figure 11 show the performance 

and speedup of the octree algorithm on the different 

platforms. 

The best speedup is with the Intel Server; in this 

case, the speedup grows almost linearly until the 8-thread 

breakpoint; then, it continues to grow, but much more 

slowly. When hyper-threading is turned on, a similar 

speedup is obtained until using 8 threads; then, it falls and 

remains the same through 32 threads. This finding shows 

that there is no gain from hyper-threading in the case of 

such a parallel simulation. 

 

Tab 3 The speedup of the octree algorithm in the case of 

different computer platforms 

 
 

Fig 11 The speedup of the octree algorithm in the case of 

different computer platforms 
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The virtual AMD server showed a lower speedup 

compared with the real Intel server, which can be 

attributed to the fact that the virtualization presents one 

more layer between the algorithm and the hardware and 

also to the fact that this server runs on an AMD Opteron 

and not on an Intel Xeon processor. 

The Intel workstation showed a similar speedup 

compared to the other platforms. The Intel workstation 

can run up to 4 threads because of its 4 cores. In this case, 

it is interesting to consider the absolute values of the 

measured performance instead of the speedup. The best 

time for the Intel workstation is 1,76 seconds when 

running on 4 threads, while the absolute best time was 

1,72 seconds, which was scored by the Intel server with 

16 threads. Although the clock of the workstation 

processor is significantly higher than the clock of the 

server processor, it is notable that the workstation with 

one processor (priced at approximately 200 US$) had 

almost the same performance as the server with two 

processors (priced at more than 1300 US$ each).  

 

5. CONCLUSIONS AND FUTURE WORK 

 

This paper has presented parallelization of the 

acoustic beam-tracing algorithm. Several types of 

parallelization were considered, and the thread-level 

parallelization was chosen as the most suitable 

implementation. The authors have used the symmetrical 

master thread-working thread model, with a shared task 

queue and local result queues, to avoid the need for the 

synchronization of threads. In addition to the already 

known parallelization of iterative algorithms, this paper 

presents the novel parallelization method of the recursive 

octree generation algorithm.  

The multi-threaded beam-tracing simulation was 

tested on three different multicore computer platforms: a 

workstation (4 cores), a virtual server (8 cores) and a 

regular server (16 cores). The parallel octree generation 

algorithm showed the best speedup on the regular server. 

The speedup was excellent until 8 threads but dropped 

significantly afterwards because, at that point, excess 

threads had to be executed on the second processor and 

the cache was not optimally used. Hyper-threading did 

not cause a speedup when the number of threads was 

greater than the number of logical cores. The virtual 

server showed a somewhat lower speedup because of the 

additional virtualization layer. The workstation had the 

smallest number of cores and, accordingly, the smallest 

relative speedup, but it showed excellent absolute 

performance that compared favorably with the regular 

server (even though the workstation processor was more 

than ten times less expensive than the server processors).  

We also tested the algorithm on models with 

different complexity. The performance did not drop when 

the complexity of the models increased; in contrast, the 

most complex model had the best speedup. Regarding the 

two versions of parallel octree generation algorithms, the 

task queue version performed substantially better than the 

naïve approach. 

Finally, we compared the speedup of our novel 

octree generation algorithm with the speedup of two 

already known iterative algorithms. All three of the 

algorithms showed a significant, almost linear speedup 

until the 8 threads were used and lower speedup later. As 

expected, the octree algorithm speedup was the lowest, 

especially after the breaking point at 8 threads, which was 

the result of the larger portion of serial code.  

This paper has shown that our novel octree 

generation algorithm, which has a multi-threading 

iterative form, has a significant speedup, especially when 

executed on a single processor. On the 4-core workstation 

processor, the algorithm worked 288% faster, and on the 

8-core server processor, it provided a speedup of 686%. 

The algorithm is robust with respect to the complexity of 

the model. 

To obtain better results, generation of the root octree 

node, which is now performed using a serial approach, 

will also have to be parallelized.  
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