

A METHOD FOR SPEEDING UP BEAM-TRACING SIMULATION

USING THREAD-LEVEL PARALLELIZATION

Marjan Sikora, Ivo Mateljan

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture,

R. Boskovica 32, 21000 Split, Croatia

(sikora@fesb.hr, ++385 21 305-859, ++385 21 305-776)

Abstract: In recent years, the computational power of modern processors has been increasing mainly because of

the increase in the number of processor cores. Computationally intensive applications can gain from this trend only if

they employ parallelism, such as thread-level parallelization. Geometric simulations can employ thread-level

parallelization because the main part of a geometric simulation can be divided into a subset of mutually independent

tasks. This approach is especially interesting for acoustic beam tracing because it is an intensive computing task. This

paper presents the parallelization of an existing beam-tracing simulation composed of three algorithms. Two of them

are iterative algorithms, and they are parallelized with an already known technique. The most novel method is the

parallelization of the third algorithm, the recursive octree generation. To check the performance of the multi-threaded

parallelization, several tests are performed using three different computer platforms. On all of the platforms, the multi-

threaded octree generation algorithm shows a significant speedup, which is linear when all of the threads are executed

on the same processor.

Key words: acoustic simulation, beam tracing, thread-level parallelization, multi-core processor

1. INTRODUCTION

Acoustic simulations are computationally intensive

applications. Recent interactive auralizations compute the

impulse response for a moving source and listener and

even account for changing geometry [1-6]. Then, they

perform auralization using the convolution of the room

impulse response and the excitation audio signal. Another

type of acoustic simulation computes the spatial

distribution of the sound pressure, the reverberation time,

the speech transmission index and other parameters, while

including an ever-increasing number of sound wave

effects. In ray-tracing and hybrid simulations, diffuse

reflections and diffraction are now generally incorporated

[7, 8], and recently, a beam-tracing simulation has been

developed that includes refraction [9]. In the case of

complex geometry and multiple sound sources, these

simulations require a significant amount of computing

power.

The increase in the computing demands of acoustic

simulations must be met by an increase in the computing

power of the system that performs the simulation. In

recent years, the clock frequency of processors has not

increased because of physical constraints, but the

computational power of modern processors is increasing

because manufacturers are multiplying the number of

cores in the processor [10]. To use an increased number

of cores, one must resort to parallelization. There are

three ways in which a modern acoustic simulation can be

parallelized:

(1) by computing with clusters or grids of computers

or processors [11];

(2) by transferring parts of the simulation to a

graphical processing unit (GPU), which has a

large number of simple parallel cores [2];

(3) by using thread-level parallelization, which

converts a single-threaded simulation to a multi-

threaded simulation that can execute on a

modern multicore central processor unit (CPU).

In some implementations, a hybrid GPU+CPU

parallelization is used [5, 12].

Transforming an acoustic simulation to run on a

cluster or a grid of computers would provide an enormous

amount of processing power, but doing so would require a

fundamental change in the code of the simulation and

even a change in the programming language that is used.

Additionally, such a simulation would require a

substantial amount of time for communication between

the cluster or grid nodes to synchronize the work because

communication would be performed externally, over the

network, which is much slower than the internal CPU or

GPU communication.

Recently, simulations that run on a GPU [2, 13]

have become common. Modern GPUs have large numbers

of processing units; as a result, they provide an affordable

yet very powerful platform for computationally intensive

tasks. A recent implementation in which acoustic ray

tracing was performed in parallel on a GPU and

auralization was performed on a CPU has proven that

auralization at interactive rates is possible, even for a

highly complex changing geometry [5].

The drawback of this approach to parallelization is

that it requires rewriting most of the simulation code

because GPUs have proprietary programing interfaces

such as CUDA or OpenCL. Additionally, the processor

cores of the GPU have a limited number of registers and

operations compared to CPU processor cores. This

constraint imposes limitations on the programming

methods, such as recursion, that are used in simulations.

The authors have recently developed a beam-tracing

method with refraction [9]. This method is based on the

geometrically complex process of beam tracing, and it

calculates not only the reflection but also the refraction of

the sound. Beam tracing in general is a computationally

intensive method, and in the past, different acceleration

techniques have been used to speed up simulation. The

accelerated beam-tracing algorithm [6] uses several

methods to accelerate the calculation, and it has

succeeded in achieving interactive rates for scenes with

moving sources in the case of simple geometry. This

method is similar to our beam-tracing method in that it

has a preprocessing phase in which spatial data structures

are created. In the preprocessing phase, the method

calculates the beam tree without any occlusion tests,

while in the running phase, it employs fail-plane and skip-

sphere accelerating techniques. However, the accelerated

beam-tracing algorithm does not use parallelism even

though (because beams are independent of each other) the

beam-tracing method is a highly parallelizable technique.

The beam tracing with refraction method that we

have developed is computationally intensive, which

motivated us to parallelize the simulation to speed up

processing. When considering which approach to use, we

decided to use thread-level parallelization. The method is

composed of two iterative algorithms and one recursive

algorithm. We used a well-known method to parallelize

the two iterative algorithms, and the main novelty in our

work is the method used to parallelize the recursive octree

generation algorithm.

The remainder of this paper is structured as follows.

Section 2 presents previous work in the field of multi-

threading in geometrical simulations. Our novel method

of parallelizing the recursive octree generation algorithm

is presented in Section 3. In Section 4, the results of

testing several aspects of our multi-threading algorithms

are presented. Finally, the conclusions are given in

Section 5.

2. PREVIOUS WORK

Thread-level parallelization exploits the features of

the operating system to execute several threads

simultaneously. This approach was originally developed

to enable different programs to run concurrently on a

single core processor by using time sharing. However,

thread-level parallelization soon evolved and was then

used for the parallel execution of a single program on a

multicore processor. Such a multi-threaded program starts

several working threads, which share the same address

space. The workload distribution is performed by the

master thread, which starts, stops and synchronizes

working threads. If different working threads that run

simultaneously write and read to the same data structure,

then a synchronization mechanism must be established.

The complexity of the thread-level parallelization

and its efficiency are governed by Amdahl’s law [14]. In

any parallel algorithm, there is always a part of the code

that cannot be parallelized. Amdahl’s law states that the

smaller the amount of this type of code (the serial part of

the code), the more efficiently the code with the same

number of parallel threads will perform. Thus, the main

issue in designing an efficient multi-threaded algorithm is

to maximize the parallel part of the code and to minimize

the serial overhead. In addition to the work that the master

thread performs in preparing and managing the threads,

the overhead includes thread communication and

synchronization as well as thread idle times that result

from sub-optimal load balancing and redundant

computations. The measurements that we performed and

presented in section 4.2 show that the multi-threading

octree generation algorithm has a slower speedup than the

other two iterative algorithms. This result occurs because

the system has a large amount of serial code in the master

thread that prepares the root node of the octree and that

cannot be parallelized.

The operating system decides which thread will be

run on which processor core. If there are more threads

than there are cores in the processor, then the operating

system uses time sharing and switches the execution of

several threads on the same core. Thus, parallelization of

the simulation would result in a speedup only when there

is at least the same number of cores as there are threads

that run in parallel. This arrangement is clearly shown in

section 5, where even with hyper-threading, there was no

speedup when the number of threads was greater than the

number of physical cores on the machine.

Geometric simulations can employ thread-level

parallelization because the main part of the geometric

simulation can be divided into a subset of mutually

independent tasks. A successful example of such

parallelization is the ray tracing visualization and

auralization that has been recently developed [12, 15], as

well as FastV [16]. FastV uses 4-sided volumetric frusta

for conservative, from-point visibility computation and

geometric sound propagation simulations. The algorithm

is highly parallelizable because the calculations for each

frustum can be performed independently. The results that

each thread computes are combined to compute the final

potential visibility set. The visibility computation

technique has been implemented and tested on a 16-core

computer, and it has been shown to be almost linear, with

a 16 times speedup for simpler models and a 13 times

speedup for more complex models.

The most difficult part of the thread-level

parallelization is synchronization of the threads. The most

efficient and robust multi-threaded application is an

application in which the threads can work independently

of each other. In a geometric simulation, such as the ray-

tracing, the simulation traces the propagation of the rays

through the simulated model. Rays do not depend on each

other and instead depend only on the model geometry.

Thus, the ray-tracing algorithm is a highly parallelizable

algorithm [1, 15]. In geometric simulations, the

synchronization between working threads, which allows

one thread to change the global state or change the same

data, is minimal or even nonexistent [11]. We have

decided to use the standard master thread-working thread

model without any synchronization, which is

accomplished by using independent data queues.

Different implementations of thread-level

parallelization employ threads differently. Some

simulations have a fixed number of threads that are

dedicated to specific tasks. Taylor et al. [1], in RESound,

use one thread to calculate first-order specular reflections,

seven threads to calculate the next three orders of specular

reflections and two orders of diffraction, and finally seven

threads to calculate the diffuse reflections. Other

simulations, such as Manta, which was designed by

Bigler et al. [11], use dynamic load-balanced multi-

threading. In this method, each thread obtains tasks

dynamically, depending on the current state of the

simulation. Such a method often employs threads to

process ray packets rather than using individual rays to

decrease the overhead. We have decided to use the shared

task queue and dynamical thread task management.

The approach we present in this paper uses a lock-

free conservative local mechanism, where the work thread

manages the task queue and each thread has an

independent local data structure for its results. By using

this approach, we avoid mutual exclusion locks and

synchronization issues. The research community has

proven that this mechanism is the fastest method [12]. We

use this approach even in our multi-threading version of

the recursive octree generation algorithm, where we have

transformed the recursive method to the iterative method

with the task queue.

Geometric simulations often use spatial data

structures such as Binary Space Partition (BSP) trees and

k-dimensional (kd) trees [11] to speed up geometric

operations. The creation and the processing of such

structures employ recursive algorithms. Thread-level

parallelization is easily employed on iterative algorithms,

but adapting the recursive algorithm to perform in a

multi-threaded manner poses a substantial challenge [17].

Several papers present parallel octree algorithms

that run on cluster of computers. Pombo [18] and Tu [19]

present parallel octree algorithms used for the FEM

simulation. The performance of Octor simulation

developed by Tu [19] shows relatively low speedup –

only 250% for 16 parallel processors, but it can scale up

to 2000 processors. Harihan and Aluru [20] have achieved

better results with their algorithm for creation and

querying of the compressed octree. They got the speedup

of 400% for eight threads, and 666% for 16 threads. Our

method has achieved better speedup as shown in section

4, but also the limitation when it performs on more than

one processor.

In the following section, we present our method for

parallelizing the octree generation recursive algorithm.

3. MODELS AND METHODS

This paper presents the multi-threaded version of

the beam-tracing method. Acoustic beam tracing can

benefit from thread-level parallelization because it is a

computing-intensive task. This task is suitable for being

parallelized because the traced beams are independent of

each other.

The beam-tracing method comprises three main

algorithms [9]:

1. the beam tracing

2. the creation of the octree of beams

3. the raster generation

where the first and the third phases are iterative

algorithms, and the second phase is the recursive

algorithm.

The first phase performs the beam tracing. Beam

tracing is initiated by the creation of 20 initial beams,

using an icosahedron with the center in the location of the

sound source. Each of 20 initial beams is then divided

according to the geometry of the surface that it hits. From

the divided incoming beams, reflected and refracted

beams are created.

In the second phase, all of the beams that result

from the beam tracing are placed into the octree. This task

is performed to speed up the spatial search of the beams,

which is performed in the last phase.

In the third and last phase, the spatial distribution of

the levels of sound intensity is created in the form of a

raster of points. For each point in the raster, the octree is

filtered to obtain those beams that contain the point. The

intensity level of the sound for the point is then calculated

by adding the level of intensity of each beam in the

position of the point.

To parallelize the two iterative algorithms, we have

used an already known method that has a set of symmetric

working threads; these threads receive their tasks from the

shared task queue.

For the recursive algorithm, we first attempted a

naive approach in which we parallelized only the first

level of the octree subdivision. However, because of load

balance problems, we changed our approach and used full

parallelization in which each level of subdivision is added

to the task queue and run in parallel.

In the remainder of this section, we will describe

how we converted to the multi-threaded form, first for the

two iterative algorithms and then for the recursive

algorithm.

3.1. Two iterative algorithms

The two iterative algorithms that present the first

and third phase of the beam tracing are parallelized in a

similar fashion. Both algorithms have two procedures: the

control procedure, which distributes the work, and the

thread procedure, which performs the processing.

The control procedure begins with the creation of

the task queue. Tasks are initial beams in the case of beam

tracing and are raster points in the case of raster

generation. The master thread then starts all of the

working threads simultaneously by giving each working

thread one task from the shared task queue.

The central part of the control procedure is a loop in

which the algorithm restarts the thread that has finished

its task. When one thread finishes processing, the master

thread restarts it and gives it a new task. This loop repeats

until there are no tasks left in the task queue.

Then, the final loop waits for all of the threads to

finish processing and terminates the threads. Although the

master thread distributes tasks from the shared task queue,

the results of each working thread are stored in a local

result queue. For each terminated thread, the results are

aggregated. In the case of beam tracing, the finished

beams of each thread are moved to the common finished

beams list, and in the case of raster generation, the raster

points are moved to the unified raster point list.

3.2 Multi-threaded generation of the beam octree

The second phase of the beam-tracing simulation is

the recursive algorithm that generates the octree of beams.

The octree contains beams from the beam-tracing phase,

and it is used to speed up the next (third) phase –

calculation of the results.

process_octree_node(node n, beams list BL)

 create eight subspace nodes SN[1] .. SN[8]

 create eight node beam lists NBL[1] .. NBL[8]

 for each node number i in SN[1] .. SN[8]

 for each beam b in BL

 if node number i contains b

 push b in NBL[i]

 if NBLi contains more beams than threshold

 process_octree_node(SN[i], NBL[i])

Fig 1 The single-threaded recursive octree algorithm

The original recursive algorithm is presented in

Figure 1. The space of the processed node is first divided

into eight equal subspaces, and for each subspace, a new

node is created. For each new node, the list of beams is

created, and all of the beams that are located in the node

subspace are added to it. If the number of beams in the

beam list of the sub-node is below the predefined

threshold, then that sub-node is not processed further. For

those nodes that have more beams than the predefined

threshold, the divide node procedure is called recursively.

Finally, when all of the sub-nodes reach the threshold, the

octree is finished, and it contains all of the beams in its

leaves.

This recursive algorithm cannot be easily

transformed into multi-threading. Let us consider the

cause of the problem: suppose that we have a processor

that has four cores that can run four threads

simultaneously. The algorithm starts with the procedure

for the processing of the root node of the octree, which

contains all of the beams. This procedure runs in the first

thread and creates eight branch nodes, which contain

eight subspaces. The simulation then starts new threads,

with one thread for the recursive dividing procedure of

each branch node. After three threads for the first three

branch nodes are started, the simulation runs out of

available threads. The thread that is processing the root

node will not finish until all of the branch nodes are

processed. Three branch node threads cannot finish

because they cannot start processing their sub-nodes

because there are no threads available. Five remaining

branch nodes of the root node also cannot be processed

for the same reason. Thus, the program comes to a stall.

If the tree is processed in a depth-first fashion

instead, the same problem occurs. The program can

process a maximum of three levels in depth. If the depth

of the tree is greater than the maximum number of

threads, processing will stop.

To solve this problem, we have substituted the

recursive octree generation algorithm with an iterative,

breadth-first approach. The first, naive version of the

iterative algorithm is shown in Figure 2.

divide the root node into an array of eight

 subspace nodes

push all nodes in the subspace node queue (SNQ)

for i equals 1 to max number of threads

 pop one subspace node n from SNQ

 start thread i with process_octree_node(

 n, beams list BL)

next i

while the SNQ is not empty and there are working

 threads

 if STQ is not empty and there is available

 thread i

 pop one subspace node n from SNQ

 start thread i with process_octree_node(

 n, beams list BL)

 endif

 if thread i has finished

 stop thread i

 endif

repeat

Fig 2 The naive multi-threaded iterative algorithm

In this algorithm, only the first level of the octree

subdivision is parallelized. The algorithm in the first loop

runs n threads to work in parallel on the first subdivisions,

where n is the maximum number of threads. If n is less

than 8, then some of the subspace nodes will not be

processed, and the next loop processes the remaining

subspace nodes as some of the threads finish their job.

Each subspace node is processed to completion in one call

to the process_octree_node procedure from Figure 1.

This approach is simple because only the topmost

level of the octree is parallelized, but it suffers from load

balance problems. If the number of available threads is

more than 8, then the excess threads will not be utilized.

Additionally, some of the subspace nodes could require

much more work than others, which could cause the other

threads to be idle while the busiest nodes continue

processing (Figure 3a). The measurements confirmed this

weakness, which is shown in Figure 8 in section 4.2.

To avoid load balance and performance issues from

the naive approach, we decided to use an iterative

algorithm that stores newly generated tasks in a shared

task queue, hoping to achieve better load balancing and a

shorter time for execution (Figure 3b).

a)

b)

Fig 3 The naive (a) and task queue (b) multi-threading

octree algorithm

The first step in creating the multi-threaded task

queue iterative algorithm was to create the single-

threaded iterative version of the algorithm, which is

shown in figure 4.

This algorithm starts with the creation of the root

node and its accompanying list of contained beams. The

root node and the beam list are pushed to the octree node

queue (OTQ) and the beam list queue (BLQ), respectively.

These two structures will be used to avoid recursive calls

by storing new tasks for the iteration. The algorithm then

enters the loop. Inside the loop, one node and its beam list

are popped from the OTQ and BLQ. If the list contains

more beams than the threshold, then the popped node and

the list are processed with the process_octree_node

procedure. This procedure returns two arrays: one array

contains eight new subnodes SN[8], and the other array

contains eight subnode beams lists NBL[8]. The nodes

and lists from these arrays are then added to the queues

OTQ and BLQ, respectively. This action completes one

iteration of the loop. The loop runs as long as OTQ and

BLQ are not empty.

create root node rn and push it in octree node

 queue (OTQ)

push beams list of all beams in beam list queue

 (BLQ)

while the OTQ is not empty

 pop one octree node (n) from OTQ

 pop one beam list (bl) from BLQ

 if bl contains more beams then treshold

 process_octree_node(n, bl, SN, NBL)

 push all nodes from SN to OTQ

 push all beam lists form NBL to BLQ

 endif

repeat

process_octree_node(node n, beams list BL, nodes

SN[8], beam lists NBL[8])

 create eight subspace nodes SN[1] .. SN[8]

 for each node number i in SN[1] .. SN[8]

 for each beam b in BL

 if node SN[i] contains b

 push b in NBL[i]

Fig 4 The single-threaded iterative algorithm

From this single-threaded iterative algorithm, we

derived the multi-threaded iterative algorithm that is

shown in Figure 5.

for i equals 1 to max number of threads

 create array of arrays of subspace nodes

 AAS[i]

 create array of arrays of node beams lists

 AAB[i]

next i

create root node rn and push it in octree node

 queue (OTQ)

push beams list of all beams in beam list queue

 (BLQ)

while the OTQ is not empty or there are working

 threads

 if OTQ is not empty and there is available

 thread i

 pop one octree node n from OTQ

 pop one beam list bl from BLQ

 if bl contains more beams than treshold

 start thread i with thread_procedure(

 n, bl, AAS[i], AAB[i])

 endif

 endif

 if thread i has finished

 push all nodes from AAS[i] to OTQ

 push all beam lists form AAB[i] to BLQ

 stop thread i

 endif

repeat

0 2 4 6 8 10 12 14 16

1

3

5

7

time

Th
re

ad

0 2 4 6 8 10 12 14 16

1

2

3

4

5

6

7

8

time

Th
re

ad

thread_procedure(node n, beams list BL, nodes

SN[8], beam lists NBL[8])

 create eight subspace nodes SN[1] .. SN[8]

 for each node number i in SN[1] .. SN[8]

 for each beam b in BL

 if node SN[i] contains b

 push b in NBL[i]

Fig 5 The multi-threaded iterative algorithm

The first step of the algorithm is to create the two-

dimensional array of subspace nodes AAS and the two-

dimensional array of node beam lists AAB. These two data

structures are used to store the array of subnodes SN and

the array of subnode beams NBL, which are the result of

each thread node’s processing procedure. In the single-

threaded algorithm, only one pair of arrays for the

subnodes and beams lists (SN[8] and NBL[8]) are

sufficient, but in the multi-threaded version, several

arrays are required, one for each thread. The capacity (of

the second dimension) of these arrays is the maximum

number of threads that the simulation can run. These data

structures ensure that every thread has its own data

structures, which avoids mutex and synchronization

problems.

After these arrays are created, the root node is

processed in the same manner as in the single-threaded

iterative algorithm, following the loop that processes the

node runs while there are still unprocessed nodes and

while all of the threads are not finished. The first part of

the loop checks whether there are nodes that are waiting

in the OTQ and whether there is a free thread available. If

both conditions are met, then one node is popped from the

queue OTQ, and a single beam list is popped from the

BLQ. If the number of beams of the node is larger than

the threshold, the node is processed. Processing of the

node is performed by starting a new worker thread and

calling the thread node processing procedure, which

performs the same job as the single-threaded procedure.

The second part of the loop checks whether there

are any threads that have finished processing. If so, all of

the sub-nodes and lists created by this thread are places on

the node and beam list queues, and the thread is stopped.

The loop stops when all of the nodes have been

processed and when all of the threads have finished their

job.

This algorithm cannot run into a deadlock similar to

the recursive multi-threaded algorithm because the

processing of one node is independent of the processing

of the other nodes. Additionally, each thread has a

separate data structure; as a result, the synchronization of

threads is avoided, and corruption of the data cannot

occur.

4. RESULTS

Multi-threaded beam tracing was tested on three

different computers, for which the characteristics are

displayed in Table 1.

Computer

#
C

o
re

s

C
a

ch
e

(M
B

)

C
lo

ck

(G
H

z)

R
A

M

(G
B

)

T
o

ta
l

C
o

re
s

Intel Core i5 2400 4 6 3,10 8 4

2x AMD Opteron 4171

HE (cloud)
6 3 2,10 32

12

(8)

2x Intel Xeon E5 2660

(hyper-threading)
8 20 2,20 32

16

(32)

Tab 1 Computer platforms used for testing

The first computer was a standard workstation

equipped with an Intel Core i5 processor with 4 cores and

the Microsoft Windows 7 operating system. The second

computer was a server with 2 AMD Opteron processors,

each with 6 cores running Microsoft Server 2012. This

computer was accessed through a Microsoft Azure cloud

service, which allows only 8 logical cores to be available

for testing because of virtualization. The third computer

was a server with two Intel Xeon 8 core processors and

Microsoft Server 2008. This server was accessed directly,

which allowed all 16 cores to be available. On this

computer, the hyper-threading test (32 logical cores) was

performed.

The beam-tracing simulation that was run in the

tests was coded in C++ language, using the Microsoft

Foundation Class (MFC) Library and the Standard

Template Library. Multi-threading was implemented

using MFC multi-threading functions. The simulation was

built in the Microsoft Visual Studio 2010 development

environment, with a 32-bit runtime. To obtain deeper

insights into the multi-threading performance, we used the

Microsoft Windows Performance Toolkit.

Three models were used to test the simulation. The

first model was a shoebox-shaped room that was 24 m

long, 10 m wide and 8 m high with 12 triangles; the

second model was a simple auditorium that was 30 m

long, 30 m wide and 15 m high with 120 triangles (figure

6a); and the third model was a multi-functional theatre

that was 20 m long, 21 m wide and 8 meters high, with

894 triangles (figure 6b).

a) b)

Fig 6 Room models used in the tests: a) the simple

auditorium (120 triangles), b) the multi-functional theatre

(894) triangles

The simulation for each of the three models traced

approximately 100.000 beams and calculated the

distribution of the sound intensity in the form of a raster

with approximately 5.000 points (Figure 7). All of the

tests for the same model produced the same distribution,

regardless of the number of threads and computer

platforms.

Fig 7 Distribution of sound intensities produced for the

simple auditorium model and a single sound source

On the Intel Core i5 workstation with four cores,

tests were executed with up to 4 threads. On the AMD

Opteron virtual server, tests were executed with up to 8

threads because there was a maximum number of 8

logical cores that were available. On the Intel Xeon

server, the tests were executed with a maximum of 16

threads when hyper-threading was turned off and with a

maximum of 32 threads when hyper-threading was turned

on.

In each test, the execution times were measured for

beam tracing, for generation of the octree, and for raster

generation. Parallel applications rely on the generation of

rasters with the resulting sound intensity distribution. To

minimize the influence of the operating system

scheduling process on the results, each test was repeated

10 times, and the results were averaged.

4.1 Results of three multi-threading algorithms

This section shows a comparison of the percentage

speedup S for the two iterative algorithms and one

recursive algorithm that comprise the multi-threaded

beam-tracing method. The tests were performed on the

Intel Xeon Server, and the results are presented in Figure

8. The linear (ideal) speedup is shown with a dotted line

for reference.

Fig 8 Parallelization percentage speedup on the Intel

Xeon server

Two iterative algorithms have almost ideal speedup

when the number of threads is below 8. The speedup of

the octree algorithm in that part of the graph is also very

good, just slightly lower than the ideal. The fact that the

octree has a smaller speedup results from the existence of

the large part of serial code being located in the beginning

of the algorithm, where the root node of the octree is

calculated serially.

All three curves show a breaking point when the

number of threads reaches 8. This feature arises because

up to 8 threads are executed on the same processor, and

beyond this point, the threads must be distributed between

two processors. When the threads are not executed on the

same processor, they cannot optimally use the processor

cache, and subsequently the performance drops.

4.2 Results of two octree parallelization approaches

The remaining tests concentrate on the octree

parallelization algorithm because it is a novel technique.

Let us first consider which of the two parallel octree

generation algorithms that are proposed in section 3.2

gives better results. The first algorithm is the naive

approach, where only the first subdivision is parallelized,

and the second algorithm is full parallelization with the

task queue. Figure 9 shows the results of both versions.

This figure clearly shows the load balancing

problems of the naive approach, which we predicted in

section 3.2. This approach results in a speedup only for

two of the threads, while the task queue approach results

in a much better speedup. For this reason, we decided to

use the task queue approach.

Fig 9 Parallelization percentage speedup for the naive and

task queue approaches in the octree generation

Our task queue octree parallelization algorithm

shows better performance than the Harihan and Aluru

[19] compressed octree parallelization – for 8 parallel

tasks it is 700% vs. 400%. On the other hand the speedup

of their parallelization scales better – our speedup for 16

threads is almost the same as for 8 threads, and their

performance is 166% better. This is because their

simulation runs on the cluster of computers, which

doesn’t show the two-processor breaking point like our

multi-core parallelization.

0%

200%

400%

600%

800%

1000%

1200%

0 4 8 12 16

S

#Threads

LINEAR

RASTER

BEAMS

OCTREE

0

2

4

6

8

10

0 4 8 12 16

S

#Threads

LINEAR

TASK
QUEUE

NAIVE

4.3 How does the complexity of the model influence

the speedup of the multi-threading parallelization?

With this test, we intended to explore how the multi-

threading octree algorithm performance scales with the

complexity of the simulated models. Table 2 and Figure

10 show the speedup of the octree algorithm in the case of

the shoebox-shaped room (24 triangles), the simple

auditorium (120 triangles) and the multi-functional theatre

(894 triangles). All of the tests were performed on the

Intel Xeon server with up to 16 threads.

Tab 2 The speedup of the octree algorithm in cases with

different model complexity

Fig 10 The speedup of the octree algorithm in cases with

different model complexity

The speedup for all three models is similar until it

reaches the breaking point of 8 threads. The speedup

grows almost linearly with the increasing number of

threads. After the breaking point, the slope of the speedup

growth becomes much smaller.

The speedup is best for the multi-functional theatre,

although the multi-functional theatre is the most complex

model. The auditorium speedup is somewhat lower, and

the shoebox room speedup is the lowest. This finding

shows that the algorithm’s performance does not decrease

with an increase in the complexity of the models.

4.4 A comparison of the results on different computers

This section contains a comparison of the results of

the multi-threaded octree generation algorithm using three

different platforms: an Intel Core i5 workstation with 4

cores; a server with 2 AMD Opteron processors, each

with 6 cores; and a server with 2 Intel Xeon processors,

each with 8 cores. The AMD server was running in the

cloud and was accessed through a virtualization layer,

which allowed only 8 logical cores to be available for

testing. The Intel server was tested with and without

hyper-threading, with 32 and 16 logical cores,

respectively. Table 3 and Figure 11 show the performance

and speedup of the octree algorithm on the different

platforms.

The best speedup is with the Intel Server; in this

case, the speedup grows almost linearly until the 8-thread

breakpoint; then, it continues to grow, but much more

slowly. When hyper-threading is turned on, a similar

speedup is obtained until using 8 threads; then, it falls and

remains the same through 32 threads. This finding shows

that there is no gain from hyper-threading in the case of

such a parallel simulation.

Tab 3 The speedup of the octree algorithm in the case of

different computer platforms

Fig 11 The speedup of the octree algorithm in the case of

different computer platforms

0

2

4

6

8

10

0 4 8 12 16

S

#Threads

LINEAR

MULTIT.

AUDIT.

SHOEB.

0

2

4

6

8

10

0 4 8 12 16 20 24 28 32

S

#Threads

LINEAR

INTEL S.

INTEL S. HT

AMD S.

INTEL W.

Shoebox Room

(24 triangles)

Simple Auditorium

(120 triangles)

Multi-Theatre

(894 triangles)

#
T

h
re

a
d

s

ti
m

e
(s

)

sp
ee

d
u

p

ti
m

e
(s

)

sp
ee

d
u

p

ti
m

e
(s

)

S
p

ee
d

u
p

1 4,61 100% 12,21 100% 16,92 100%

2 2,65 174% 7,33 167% 10,35 163%

4 1,57 294% 4,35 281% 5,87 288%

8 0,75 615% 1,78 686% 2,26 749%

12 0,78 591% 1,74 702% 2,26 749%

16 0,8 576% 1,72 710% 2,22 762%

Intel Works.

(4 cores)

AMD Server

(8 cores)

Intel Server

 (16 cores)

Intel Server HT

(32 cores)

#
T

h
re

a
d

s

ti
m

e
(s

)

sp
ee

d
u

p

ti
m

e
(s

)

sp
ee

d
u

p

ti
m

e
(s

)

S
p

ee
d

u
p

ti
m

e
(s

)

S
p

ee
d

u
p

1 5,07 100% 12,15 100% 12,21 100% 12,45 100%

2 2,78 182% 5,95 204% 7,33 167% 7,08 176%

4 1,76 288% 4,21 289% 4,35 281% 4,46 279%

8 2,33 521% 1,78 686% 1,91 652%

12 1,74 702% 2,02 615%

16 1,72 710% 2,00 622%

32 2,00 623%

The virtual AMD server showed a lower speedup

compared with the real Intel server, which can be

attributed to the fact that the virtualization presents one

more layer between the algorithm and the hardware and

also to the fact that this server runs on an AMD Opteron

and not on an Intel Xeon processor.

The Intel workstation showed a similar speedup

compared to the other platforms. The Intel workstation

can run up to 4 threads because of its 4 cores. In this case,

it is interesting to consider the absolute values of the

measured performance instead of the speedup. The best

time for the Intel workstation is 1,76 seconds when

running on 4 threads, while the absolute best time was

1,72 seconds, which was scored by the Intel server with

16 threads. Although the clock of the workstation

processor is significantly higher than the clock of the

server processor, it is notable that the workstation with

one processor (priced at approximately 200 US$) had

almost the same performance as the server with two

processors (priced at more than 1300 US$ each).

5. CONCLUSIONS AND FUTURE WORK

This paper has presented parallelization of the

acoustic beam-tracing algorithm. Several types of

parallelization were considered, and the thread-level

parallelization was chosen as the most suitable

implementation. The authors have used the symmetrical

master thread-working thread model, with a shared task

queue and local result queues, to avoid the need for the

synchronization of threads. In addition to the already

known parallelization of iterative algorithms, this paper

presents the novel parallelization method of the recursive

octree generation algorithm.

The multi-threaded beam-tracing simulation was

tested on three different multicore computer platforms: a

workstation (4 cores), a virtual server (8 cores) and a

regular server (16 cores). The parallel octree generation

algorithm showed the best speedup on the regular server.

The speedup was excellent until 8 threads but dropped

significantly afterwards because, at that point, excess

threads had to be executed on the second processor and

the cache was not optimally used. Hyper-threading did

not cause a speedup when the number of threads was

greater than the number of logical cores. The virtual

server showed a somewhat lower speedup because of the

additional virtualization layer. The workstation had the

smallest number of cores and, accordingly, the smallest

relative speedup, but it showed excellent absolute

performance that compared favorably with the regular

server (even though the workstation processor was more

than ten times less expensive than the server processors).

We also tested the algorithm on models with

different complexity. The performance did not drop when

the complexity of the models increased; in contrast, the

most complex model had the best speedup. Regarding the

two versions of parallel octree generation algorithms, the

task queue version performed substantially better than the

naïve approach.

Finally, we compared the speedup of our novel

octree generation algorithm with the speedup of two

already known iterative algorithms. All three of the

algorithms showed a significant, almost linear speedup

until the 8 threads were used and lower speedup later. As

expected, the octree algorithm speedup was the lowest,

especially after the breaking point at 8 threads, which was

the result of the larger portion of serial code.

This paper has shown that our novel octree

generation algorithm, which has a multi-threading

iterative form, has a significant speedup, especially when

executed on a single processor. On the 4-core workstation

processor, the algorithm worked 288% faster, and on the

8-core server processor, it provided a speedup of 686%.

The algorithm is robust with respect to the complexity of

the model.

To obtain better results, generation of the root octree

node, which is now performed using a serial approach,

will also have to be parallelized.

REFERENCES

[1] Taylor M, Chandak A, Antani L, Manocha D

(2009) RESound: Interactive Sound Rendering for

Dynamic Virtual Environments. Proc 17th Intern ACM

Conf Multimed, 19.-24. 10. 2009. Beijing China

[2] Savoia L, Manocha D, Lin MC (2010) Use of

GPUs in room acoustic modeling and auralization. Proc

Intern Symp Room Acoust, 29.-31. 08. 2010. Melbourne

Australia

[3] Noisternig M et al (2008) Framework for Real-

Time Auralization in Architectural Acoustics. Acta Acust

united with Acust, Vol. 94, pp. 1000 – 1015

[4] Lentz T et al (2007) Virtual Reality System with

Integrated Sound Field Simulation and Reproduction.

EURASIP J Adv Signal Proc, Vol. 2007, Article ID

70540

[5] Taylor M et al (2012) Guided Multiview Ray

Tracing for Fast Auralization. IEEE Trans Vis Comput

Graphics, Vol. 12, No. 11, pp. 1797-1810

[6] Laine S et al (2009) Accelerated beam tracing

algorithm. Appl Acoust, Vol. 70, No. 1, pp. 172 – 181

 [7] James A, Dalenback BI, Naqvi A (2008)

Computer Modelling With CATT Acoustics - Theory and

Practise of Diffuse Reflection and Array Modeling. Proc

24th Reprod Sound Conf, 20.-21.11.2008. Brighton UK

[8] Feistel S et al (2007) Improved methods for

calculating room impulse response with EASE 4.2

AURA, Proc 19th Intern Congr Acous, 2.-7. September

2007. Madrid Spain

[9] Sikora M, Mateljan I, Bogunović N (2012)

Beam Tracing with Refraction. Arch Acous,Vol. 37, No.

3, pp. 301-316

[10] Danowitz A et al (2012) CPU DB: Recording

Microprocessor History. Commun ACM, Vol. 55, No. 4,

pp. 55 – 70

[11] Bigler J, Stephens A, Parker SG (2006) Design

for Parallel Interactive Ray Tracing Systems. Tech Rep,

UUSCI-2006-027, SCI Institute, University of Utah

[12] Nunes M, Santos LP (2009) Workload

Distribution for Ray Tracing in Multi-Core Systems.

Proc. 17º Encontro Port. Comp. Graf., 29.30. 10. 2009.

Covilha Portugal

[13] Jedrzejewski M, Marasek K (2006)

Computation of room acoustics using programable video

hardware. Comput Imag Vis, Vol. 32, pp. 587 - 592

[14] Amdahl GM (1967) Validity of the Single

Processor Approach to Achieving Large-Scale Computing

Capabilities. Proc Am Fed Inf Proc Soc Conf, pp. 483 –

485

 [15] Spjut J, Kopta D, Brunvald E, Boulos S, Kellis

S (2008) TRaX: A MultiThreaded Architecture for

RealTime Ray Tracing. Proc Symp App Specif Proces,

08.-09.06. 2008 Anaheim USA

[16] Chandak A et al (2009) FastV: From-point

Visibility Culling on Complex Models. Comp. Graphics

Forum, Vol. 28, No. 4, pp. 1237-1246

 [17] Gao L et al (2009) Exploiting Speculative TLP

in Recursive Programs by Dynamic Thread Prediction.

Proc 18th Int Conf Compil Constr, pp. 78 - 93

[18] Pombo JJ, Aldegunde M, Garcia-Loureiro AJ

(2006) Optimization of an Octree-based 3-D Parallel

Meshing Algorithm for the Simulation of Small-Feature

Semiconductor Devices. Parallel Comp, Vol. 33, pp. 439-

446

[19] Tu T, O'Hallaron DR, Ghattas O (2005)

Scalable Parallel Octree Meshing for Terascale

Applications. Proc 2005 ACM/IEEE Conf Supercomput,

12.-18.11. 2005. Seattle USA

[20] Hariharan B, Aluru S (2005) Efficient Parallel

Algorithms and Software for Compressed Octrees with

Applications to Hierarchical Methods. J Parallel Comp,

Vol 31, No. 3+4, pp. 311 - 331

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. MODELS AND METHODS
	4. RESULTS
	5. CONCLUSIONS AND FUTURE WORK
	REFERENCES

