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ROOT: An Open Source Project
• Started in 1995
• 11 full time developers at CERN plus11 full time developers at CERN, plus 

Fermilab, Agilent Tech, Japan, MIT (one 
each)each)

• Large number of part-time developers: let 
users participateusers participate

• Available (incl. source) under GNU LGPL
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ROOT in a Nutshell
F k f l l d h dliFramework for large scale data handling
Provides, among others,

– an efficient data storage, access and query 
system (PetaBytes)

(– advanced statistical analysis algorithms (multi 
dimensional histogramming, fitting, minimization 
and cluster finding)and cluster finding)

– scientific visualization: 2D and 3D graphics, 
Postscript PDF LateXPostscript, PDF, LateX

– geometrical modeller
– PROOF parallel query engine
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Graphics
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Histogramming
• Histogram is just occurrence counting, i.e. 

how often they appeary pp
• Example: {1,3,2,6,2,3,4,3,4,3,5}
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Histogramming
• How is a Real Histogram Made?

Lets consider the age distribution of the g
participants:

Binning:

Grouping ages ofGrouping ages of 
participants in 
several categoriesseveral categories 
(bins)
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Histogramming
Table of Ages
(binned)

Shows distribution of ages, total number of 
entries (57 participants) and average: 27
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entries (57 participants) and average: 27 
years 10 months 6 days…



Histograms
Analysis result: often a histogram

Menu:
View / EditorView / Editor
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Fitting
Analysis result: 

often a fit
based on a 
histogramg

CSC08 • ROOT 13



Fit
Function describing the distribution of data
Fit = optimization in parameters,p p ,

e g Gaussian
2

2

]2[2
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]0[)( ⋅
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−

⋅=
x

exfe.g. Gaussian
For Gaussian: [0] = "Constant"

[1] = "Mean"

]0[)( exf

[1]  Mean
[2] = "Sigma" / "Width"

Objective: choose parameters [0], [1], [2] to get 
function as close as possible to histogram
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Fit

[2] (sigma)

Gaussian fit over our histogram:

[0] (constant)
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Fit Panel
To fit a histogram:
right click histogramright click histogram,
"Fit Panel"

Straightforward interface 
for fitting!
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2D/3D
We have seen 1D histograms, but there are 
also histograms in more dimensionsalso histograms in more dimensions.
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2D Histogram 3D Histogram



2D Fitting
Example of a fit over a 2D histogram
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OpenGL
• OpenGL can be used to render 2D & 3D 

histograms, functions, parametric equations, 
and to visualize 3D objects (geometry)
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OpenGL
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Geometry
• Describes complex detector geometries
• Allows visualization of these detectorAllows visualization of these detector 

geometries with e.g. OpenGL
• Optimized particle transport in complex• Optimized particle transport in complex 

geometries
W ki i l ti ith i l ti• Working in correlation with simulation 
packages such as GEANT3, GEANT4 and 
FLUKAFLUKA
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Geometry
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EVE (Event Visualization Environment)
• Event: Collection of data from a detector (hits, 

tracks, …), )
Use EVE to:
• Visualize these physics objects together with• Visualize these physics objects together with 

detector geometry (OpenGL)
Vi ll i t t ith th d t l t• Visually interact with the data, e.g. select a 
particular track and retrieve its physical 

tiproperties
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EVE
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Math TMVA

SPlot
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Multivariate Analysis
• Consider this simple question: How to 

estimate someone’s life expectancy? p y
• This depends on many variables:

Life style Sex (m/f)

Country
(region)

Life style Sex (m/f)

Life 
expectancy

Genetics Income

expectancy
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Multivariate Analysis
• Many variables? Parallel Coordinates

• This will not help to solve the problem, it only 
allows to visualize multiple variables
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allows to visualize multiple variables



Multivariate Analysis
• Sample described by k variables (that are 

found to be discriminating)
• Samples can be classified 

into n categories: H1 … Hn
H2

x2

1 n
• E.g.

– H1 : life exp. < 40
H1

H31 p
– H2 : life exp. 40..60
– H3 : life exp. > 60

x1
Example: k=2, n=3

• Example: k=2 variables x1, x2
n=3 categories H1, H2, H3
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Multivariate Analysis
Problem: Find boundaries between H1, H2, and 

H3 such that f(x) returns the category of x with 3 ( ) g y
maximum correctness

Non-linear BoundariesLinear Boundaries ?Rectangular Cuts ?

H2
x2H2

x2H2
x2

H1
H3

H1
H3

H1
H3

x1x1x1

Simple example I can do it by hand.

Large input variable space, complex 
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g p p p
correlations: manual optimization very difficult



Multivariate Analysis
Generic problem: find category for set of values
To make such an estimation we need twoTo make such an estimation, we need two 

phases:
• (Supervised) learning / training phase:• (Supervised) learning / training phase:

– Take samples for which categories are known 
M hi d t t i th ll t l ifi ti– Machine adapts to give the smallest classification 
error on training sample

P i h• Processing phase:
– The trained system can now analyze and produce 

t t f l
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TMVA
• Framework offering a collection of data mining 

tools, e.g. NN (Neural Network), GA (Genetic , g ( ), (
Algorithm), …

• In HEP mostly two class problems – signal (S)• In HEP mostly two class problems – signal (S) 
and background (B)
– Physics processes
– Finding physics objects
– Detector readout
– ...
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Interlude: HELP!
ROOT is a framework – only as good as its 

documentation.
User's Guide (it has your answers!)

h // hhttp://root.cern.ch
“What is TNamed? What functions does itWhat is TNamed? What functions does it 

have?”
R f G idReference Guide

http://root cern ch/root/html
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http://root.cern.ch/root/html



Let's fire up ROOT!
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Setting Up ROOT
Before starting ROOT:

setup environment variables $PATH, p $ ,
$LD_LIBRARY_PATH

Go to where ROOT is:
$ d / th t / t

(ba)sh:

$ cd /path-to/root

$ . bin/thisroot.sh(ba)sh: 
(t)csh: $ source bin/thisroot.csh

$ . bin/thisroot.sh
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Starting Up ROOT
ROOT is prompt-based
$ root$ root
root [0] _

Prompt speaks C++p p

root [0] gROOT->GetVersion();↵
( t h * 0 5 f7 8)"5 16/00"(const char* 0x5ef7e8)"5.16/00"
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ROOT As Pocket Calculator
Calculations:

t [0] t(42)root [0] sqrt(42)
(const double)6.48074069840786038e+00

t [1] d bl l 0 17root [1] double val = 0.17;
root [2] sin(val)
(const double)1.69182349066996029e-01

Uses C++ Interpreter CINT
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Running Code
To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:

[ ] y

root [0] .L mycode.C
root [1] mycode()

Quit:
root [0] .q

All of CINT's commands (help):
t [0] h

[ ] q
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root [0] .h



ROOT Prompt
Why C++ and not a scripting language?!
You'll write your code in C++ too Support forYou ll write your code in C++, too. Support for 
python, ruby,… exists.

Why a prompt instead of a GUI?Why a prompt instead of a GUI?

ROOT is a programming framework, not an 
ffi it U GUI h d doffice suite. Use GUIs where needed.
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Running Code
Macro: file that is interpreted by CINT (.x)

int mymacro(int value)
{{
int ret = 42;
ret += value;ret +  value;
return ret;

}

E t ith (42)

}
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Execute with .x mymacro.C(42)



Compiling Code: ACLiC
Load code as shared lib, much faster:
.x mymacro.C++(42)

Uses the system's compiler, takes seconds

.x mymacro.C++(42)

Subsequent .x mymacro.C+(42) check for 
changes, only rebuild if needed

Exactly as fast as e.g. Makefile based stand-
alone binary!y

CINT knows types, functions in the file, e.g. call
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mymacro(43)



Compiled versus Interpreted
Why compile?
Faster execution CINT has limitationsFaster execution, CINT has limitations, 
validate code.

Why interpret?
Faster Edit → Run → Check result → EditFaster Edit Run  Check result  Edit 
cycles ("rapid prototyping").
Scripting is sometimes just easier.Scripting is sometimes just easier.

Are Makefiles dead?
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Yes! ACLiC is even platform independent!



A Little C[++]
Hopefully many of you know – but some don't.
• Object constructor assignmentObject, constructor, assignment
• Pointer, reference

S d t t• Scope, destructor
• Stack vs. heap
• Inheritance, virtual functions

If you use C++ you have to understand these 
concepts!
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Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond;
mySecond = myObject;mySecond  myObject;
cout << mySecond.GetName() << endl;
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Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond;
mySecond = myObject;mySecond  myObject;
cout << mySecond.GetName() << endl;

Creating objects:
1. Constructor TNamed::TNamed(const1. Constructor TNamed::TNamed(const 

char*, const char*)
2 Default constructor TNamed::TNamed()
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2. Default constructor TNamed::TNamed()



Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond;
mySecond = myObject;mySecond  myObject;
cout << mySecond.GetName() << endl;

3. Assignment:
myObjectmySecond

TNamed:
fName "name"
fTitle "title"

y j
TNamed:
fName ""
fTitle ""

y
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fTitle "title"fTitle ""



Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond;
mySecond = myObject;mySecond  myObject;
cout << mySecond.GetName() << endl;

3. Assignment: creating a twin
myObjectmySecond

= TNamed:
fName "name"
fTitle "title"

TNamed:
fName ""
fTitle ""

TNamed:
fName "name"
fTitle "title"

y jy
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fTitle "title"fTitle "" fTitle "title"



Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond;
mySecond = myObject;mySecond  myObject;
cout << mySecond.GetName() << endl;

4. New content
mySecond

output:TNamed:
fName "name"
fTitle "title"

y

"name"
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fTitle "title"



Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
cout << pMySecond->GetName() << endl;

Pointer declared with "*", initialize to 0
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Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
cout << pMySecond->GetName() << endl;

myObject
Assignment: point to myObject; no copy

TNamed:
fName "name"
fTitle "title"

y j

=     & [address]
pMySecond

fTitle "title"
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Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
cout << pMySecond->GetName() << endl;

Assignment: "&" creates reference:
myObject

=     & TNamed:
fName "name"
fTitle "title"

[address]

y j
pMySecond
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fTitle "title"



Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
cout << pMySecond->GetName() << endl;

Access members of value pointed to by "->"Access members of value pointed to by >
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Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
cout << (*pMySecond).GetName() << endl;

Or dereference pointer by "*"Or dereference pointer by 
and then access like object with "."

CSC08 • ROOT 52CSC08 • ROOT 52



Pointer, Reference
Changes propagated:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond  &myObject;
pMySecond->SetName("newname");
cout << myObject GetName() << endl;

Pointer forwards to object

cout << myObject.GetName() << endl;

Pointer forwards to object
Name of object changed – prints "newname"!
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Object vs. Pointer
Compare object:
TNamed myObject("name", "title");TNamed myObject( name , title );
TNamed mySecond = myObject;
cout << mySecond GetName() << endl;

t i t

cout << mySecond.GetName() << endl;

to pointer:
TNamed myObject("name", "title");
TNamed* pMySecond = &myObject;
cout << pMySecond->GetName() << endl;
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Object vs. Pointer: Parameters
Calling functions: object parameter obj gets 

copied void funcO(TNamed obj);p
for function 
call!

void funcO(TNamed obj);

TNamed myObject;
funcO(myObject);

Pointer parameter: only address passed

funcO(myObject);

Pointer parameter: only address passed,
no copy void funcP(TNamed* ptr);

TNamed myObject;
funcP(&myObject);
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Object vs. Pointer: Parameters
Functions changing parameter: funcO can only 

access copy! void funcO(TNamed obj){py
caller not
changed!

void funcO(TNamed obj){
obj.SetName("nope"); 

}g
funcO(caller);

Using pointers (or references) funcP can 
change void funcP(TNamed* ptr){
caller

( p ){
ptr->SetName("yes");

}
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funcP(&caller);



Scope
Scope: range of accessibility and C++ "life".
Birth: constructor death: destructorBirth: constructor, death: destructor
{ // birth: TNamed() called
TNamed n;TNamed n;

} // death: ~TNamed() called

Variables are valid / accessible only in scopes:
int a = 42;int a = 42;
{ int a = 0; }

t << << dl
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cout << a << endl;



Scope
Functions are scopes:
void func(){ TNamed obj; }void func(){ TNamed obj; }

func();
cout << obj << end; // obj UNKNOWN!

must not return
TNamed* func(){
TNamed obj;

pointers to
local variables!

TNamed obj;
return &obj; // BAD!

}
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}



Stack vs. Heap
So far only stack:
TNamed myObj("n","t");

Fast, but often < 10MB. Only survive in scope.

TNamed myObj( n , t );

Heap: slower GBs (RAM + swap) creation andHeap: slower, GBs (RAM + swap), creation and 
destruction managed by user:

TNamed* pMyObj = new TNamed("n","t");
delete pMyObj; // or memory leak!
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Stack vs. Heap: Functions
Can return heap objects without copying:
TNamed* CreateNamed(){TNamed  CreateNamed(){
// user must delete returned obj!
TNamed* ptr = new TNamed("n","t");

t b t TN d bj t till th h

TNamed  ptr  new TNamed( n , t );
return ptr; }

ptr gone – but TNamed object still on the heap, 
address returned!
TNamed* pMyObj = CreateNamed();
cout << pMyObj->GetName() << endl;
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delete pMyObj; // or memory leak!



Inheritance
Classes "of same kind" can re-use functionality
E g TPlate TBowl both dishes:E.g. TPlate, TBowl both dishes:
class TPlate: public TDish {...};
class TBowl: public TDish { };

Can implement common functions in TDish:

class TBowl: public TDish {...};

Can implement common functions in TDish:
class TDish {
public:public:
void Wash();

};
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Inheritance: The Base
Use TPlate, TBowl as dishes:

assign pointer of derived to pointer of base g p p
"every plate is a dish"
TDish *a = new TPlate();TDish a  new TPlate();
TDish *b = new TBowl();

But not every dish is a plate, i.e. the inverse 
doesn't work. And a bowl is totally not a plate!y p
TPlate* p = new TDish(); // NO!
TPlate* q = new TBowl(); // NO!
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TPlate  q  new TBowl(); // NO!



Virtual Functions
Often derived classes behave differently:

class TDish {class TDish { ...
virtual bool ForSoup() const;

}};
class TPlate: public TDish { ...
bool ForSoup() const {return false;}

};
class TBowl: public TDish { ...
bool ForSoup() const {return true;} 
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Pure Virtual Functions
But TDish cannot know! Mark as "not 

implemented"p
class TDish { ...
virtual bool ForSoup() const = 0;virtual bool ForSoup() const  0;

};

Only for virtual functions.
Cannot create object of TDish anymore (oneCannot create object of TDish anymore (one 

function is missing!)
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Calling Virtual Functions
Call to virtual functions evaluated at runtime:
void FillWithSoup(TDish* dish) {
if (dish->ForSoup())
dish->SetFull();

W k f t t d

();
}

Works for any type as expected:
TDish* a = new TPlate();
TDish* b = new TBowl();
FillWithSoup(a); // will not be full
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FillWithSoup(b); // is now full



Virtual vs. Non-Virtual
So what happens if non-virtual?
class TDish { ...class TDish { ...
bool ForSoup() const {return false;}

};

Will now always call TDish::ForSoup() i e false

};

Will now always call TDish::ForSoup(), i.e. false
void FillWithSoup(TDish* dish) {
if (di h F S ())if (dish->ForSoup())
dish->SetFull();
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Congrats!

You have earned yourself the
Fine print:
* c m s with lif lYou have earned yourself the
CSC08 ROOT C++ Diploma.
* comes with lifelong

subscription, p
From now on you may use
C++with t f li  l t!*

p
this diploma is worth nothing

if not x cis d ula lyC++without feeling lost!*if not exercised regularly
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Summary
We know:
• why and how to start ROOTwhy and how to start ROOT
• C++ basics

th t d ith " "• that you run your code with ".x"
• can call functions in libraries
• can (mis-) use ROOT as a pocket calculator!

Lots for you to discover during next two lectures 
and especially the exercises!
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Saving DataSaving Data

Streaming, Reflection, TFile,
Schema EvolutionSchema Evolution
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Saving Objects
Cannot do in C++:
TNamed* o; TNamed* p;TNamed  o; TNamed  p;
o = new TNamed("name", "title");
std::write("file.bin", "obj1", o);
p = std::read("file.bin", "obj1");
p->GetName();

E.g. LHC experiments use C++ to manage data
Need to write C++ objects and read them backNeed to write C++ objects and read them back
std::cout not an option: 15PetaBytes / year of 

processed data (i e data that will be read)
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processed data (i.e. data that will be read)



Saving Objects – Saving Types
What's needed?
TNamed* o;TNamed* o;
o = new TNamed("name", "title");
std::write("file.bin", "obj1", o);

Store data members of TNamed; need to know:

( , j , )

1) type of object
2) data members for the type2) data members for the type
3) where data members are in memory
4) d th i l f it t di k
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4) read their values from memory, write to disk



Serialization
Store data members of TNamed: serialization
1) type of object: runtime-type-information RTTI1) type of object: runtime type information RTTI
2) data members for the type: reflection
3) h d t b i3) where data members are in memory: 

introspection
4) read their values from memory, write to disk: 

raw I/O

Complex task and C++ is not your friend
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Complex task, and C  is not your friend.



Reflection
Need type description (aka reflection)
1 types sizes members1. types, sizes, members

class TMyClass {

TMyClass is a class. float fFloat;
Long64_t fLong;

Members:
"fFloat" type float size 4 bytes

};

– fFloat , type float, size 4 bytes
– "fLong", type Long64_t, size 8 bytes
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Platform Data Types
Fundamental data types (int, long,…):

size is platform dependentp p

Store "long" on 64bit platform writing 8 bytes:Store long  on 64bit platform, writing 8 bytes:
00, 00, 00, 00, 00, 00, 00, 42

R d 32bit l tf "l " l 4 b tRead on 32bit platform, "long" only 4 bytes:
00, 00, 00, 00

Data loss, data corruption!
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ROOT Basic Data Types
Solution: ROOT typedefs

Signed Unsigned sizeof [bytes]
h hChar_t UChar_t 1

Short_t UShort_t 2
Int_t UInt_t 4
Long64 t ULong64 t 8Long64_t ULong64_t 8
Double32_t float on disk, 

double in RAM
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double in RAM



Reflection
Need type description (platform dependent)
1 types sizes members1. types, sizes, members
2. offsets in memory class TMyClass {

float fFloat;
Long64_t fLong;

re
ss – 16

– 14
};

l
a
s
s

y 
A

dd
r

fLong– 12
– 10

8

T
M
y
C

em
or

y – 8
– 6
– 4

PADDING "fFloat" is at offset 0
"fL " i t ff t 8
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M
e fFloat– 2

– 0
"fLong" is at offset 8



I/O Using Reflection
members memory disk 

es
s – 16

14

a
s
s

A
dd

re

fLong
– 14
– 12
– 10

T
M
y
C
l
a

m
or

y 
A

– 8
– 6
– 4

PADDING

T

M
em fFloat

– 4
– 2
– 0
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C++ Is Not Java
Lesson: need reflection!
Where from?Where from?

J t d t b ithJava: get data members with 
Class.forName("MyClass").getFields()

C++: get data members with BE CAREFUL

– oops. Not part of C++. THIS LANGUAGE
HAS NO BRAIN

USE YOUR OWN
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USE YOUR OWN



ROOT And Reflection
Simply use ACLiC:

L MyCode cxx+

C t lib ith fl ti d t ("di ti ")

.L MyCode.cxx+

Creates library with reflection data ("dictionary") 
of all types in MyCode.cxx!

Dictionary needed for interpreter, tooy p ,
ROOT has dictionary for all its types
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Back To Saving Objects: TFile
ROOT stores objects in TFiles:

TFile* f = new TFile("file.root", "NEW");

TFile behaves like file system:
f->mkdir("dir");

TFile has a current directory:

f->mkdir( dir );

TFile compresses data ("zip"):

f->cd("dir");

TFile compresses data ( zip ):
f->GetCompressionFactor()
2.61442160606384277e00
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Saving Objects, Really
Given a TFile:
TFile* f = new TFile("file.root", "RECREATE");

W it bj t d i i f TObj t

( , );

Write an object deriving from TObject:
object->Write("optionalName")

"optionalName" or TObject::GetName()

Write any object (with dictionary):
f >W it Obj t( bj t " ")
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f->WriteObject(object, "name");



"Where Is My Histogram?"
TFile owns histograms, graphs, trees

(due to historical reasons):( )
TFile* f = new TFile("myfile.root");
TH1F* h = new TH1F("h","h",10,0.,1.);( , , , , )
h->Write();
TCanvas* c = new TCanvas();
c->Write();

h automatically deleted: owned by file

c >Write();
delete f;

h automatically deleted: owned by file.
c still there. names unique!
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TFile acts like a scope for hists, graphs, trees!



Risks With I/O
Physicists can loop a lot:
For each particle collisionFor each particle collision

For each particle created
F h d t t d lFor each detector module

Do something.
Physicists can loose a lot:
Run for hoursRun for hours…

Crash.
E thi l t
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Everything lost.



Name Cycles
Create snapshots regularly:

MyObject;1MyObject;1
MyObject;2
…
MyObject; 5427
MyObject

Write() does not replace but append!
but see documentation TObject::Write()
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but see documentation TObject::Write()



The "I" Of I/O
Reading is simple:

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
f->GetObject("h", h);
h->Draw();
delete f;

Remember:

delete f;

Remember:
TFile owns histograms!
file gone histogram gone!
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file gone, histogram gone!



Ownership And TFiles
Separate TFile and histograms:

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
TH1::AddDirectory(kFALSE);
f->GetObject("h", h);
h->Draw();h >Draw();
delete f;

… and h will stay around.
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Changing Class – The Problem
Things change:

class TMyClass {class TMyClass {
float fFloat;
Long64 t fLong;Long64_t fLong;

};
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Changing Class – The Problem
Things change:

class TMyClass {class TMyClass {
double fFloat;
Long64 t fLong;Long64_t fLong;

};

Inconsistent reflection data, mismatch in 
memory, on disky,

Objects written with old version cannot be read
Need to store reflection with data to detect!
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Need to store reflection with data to detect!



Schema Evolution
Simple rules to convert disk to memory layout
1. skip removed membersp

Long64_t fLong;
file.root RAM

ignore

2 default-initialize added members

float fFloat; float fFloat;

2. default initialize added members

file.root Long64 t fLong;
RAMTMyClass(): fLong(0)

3 convert members where possible

float fFloat;
g _ g;

float fFloat;
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3. convert members where possible



Class Version
ClassDef() macro makes I/O faster, needed 

when deriving from TObjectg j
Can have multiple class versions in same file
Use version number to identify layout:Use version number to identify layout:
class TMyClass: public TObject {
blipublic:
TMyClass(): fLong(0), fFloat(0.) {}
virtual ~TMyClass() {}
...
ClassDef(TMyClass,1); // example class

};
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};



Reading Files
Files store reflection and data: need no library!

function

call
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Powers of ROOT I/O
• Can even open 
TFile("http://myserver.com/afile.root")( p y )
including read-what-you-need!

• Nice viewer for TFile: new TBrowserNice viewer for TFile: new TBrowser
• Combine contents of TFiles with 
$ROOTSYS/bin/hadd$ROOTSYS/bin/hadd
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Summary
Big picture:
• you know ROOT files – for petabytes of datayou know ROOT files for petabytes of data 
• you learned what schema evolution is

l d th t fl ti i k f I/O• you learned that reflection is key for I/O

Small picture:
• you can write your own data to filesyou can write your own data to files
• you can read it back

h th d fi iti f l
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• you can change the definition of your classes



ROOT Collection ClassesROOT Collection Classes



Collection Classes
ROOT collections polymorphic containers: hold 

pointers to TObject, so:p j ,
• Can only hold objects that inherit from 

TObjectTObject
• Return pointers to TObject, that have to be 

cast back to the correct subclasscast back to the correct subclass
void DrawHist(TObjArray *vect, int at)
{{ 

TH1F *hist = (TH1F*)vect->At(at);
if (hist) hist->Draw();

}
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}



TObjArray
• Like vector<TObject *>, supports traditional 

array semantics:y
– Objects can be directly accessed via an index 

with the operator[]p []
– Expands automatically when objects are added
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TClonesArray
Array of objects of the 

same class ("clones")( )
Designed for repetitive 

data analysis tasks:data analysis tasks: 
same type of objects 
created and deletedcreated and deleted 
many times.

No comparable class inNo comparable class in 
STL! The internal data structure of a 

TClonesArray
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Traditional Arrays
Very large number of new and delete calls in large 

loops like this (N(100000) x N(10000) times 
new/delete):

10000

N(100000)

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {
a[i] = new TTrack(x,y,z,...);
...

} N(10000)}
...
a.Delete();

}

( )
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You better use a TClonesArray which reduces the 
number of new/delete calls to only N(10000):
TClonesArray a("TTrack", 10000);

N(100000)

while (TEvent *ev = (TEvent *)next()) {
for (int i = 0; i < ev->Ntracks; ++i) {

new(a[i]) TTrack(x,y,z,...);new(a[i]) TTrack(x,y,z,...);
...

}
N(10000)

...
a.Delete();

}

Pair of new / delete calls cost about 4 µs
Allocating / freeing memory NN(109) times costs about 
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g g y ( )
1 hour!



ROOT Trees



Trees
From:
Simple data types
(e.g. Excel tables)

To:
Complex data types
(e.g. Database tables)

Event

Header Type

Particles

Pt Charge

Energy Track

VertexVertex

Position
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Trees
• Databases have row wise access

– Designed to store complete objects.es g ed o s o e co p e e objec s
– Data clustering is organized around objects and 

containers of objects. j
– Can only access the full object (e.g. full event)

• ROOT trees have column wise accessROOT trees have column wise access
– Direct access to any event, any branch or any leaf 

even in the case of variable length structureseven in the case of variable length structures
– Designed to access only a subset of the object 

attributes (e.g. only particles’ energy)
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Why Trees ?
object.Write() convenient for simple objects like 

histograms, inappropriate for saving g , pp p g
collections of events containing complex 
objectsj

• Reading a collection: read all elements (all 
events)events)

• With trees: only one element in memory, or 
even only a part of it (less I/O)even only a part of it (less I/O)
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Why Trees ?
• Extremely efficient write once, read many 

("WORM")( )
• Designed to store >109 (HEP events) with 

same data structuresame data structure
• Trees allow fast direct and random access to 

any entry (sequential access is the best)any entry (sequential access is the best)
• Optimized for network access
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Building ROOT Trees
Overview of 

Trees– Trees
– Branches

5 t t b ild TT5 steps to build a TTree
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Tree structure
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Tree structure
• Branches: directories 
• Leaves: data containers
• Can read a subset of all branches – speeds up 

considerably the data analysis processes
T l t b ti i d f d t l i• Tree layout can be optimized for data analysis

• The class for a branch is called TBranch
• Variables on TBranch are called leaf (yes TLeaf)• Variables on TBranch are called leaf (yes - TLeaf)
• Branches of the same TTree can be written to  

separate filesseparate files
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Memory ↔ Tree

0 T.GetEntry(6)
Memory

Each Node is a branch in the Tree

1
2
3
4
5
6
77
8
9
10
11
12
1313
14
15
16
17
18 T.Fill()

T
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Five Steps to Build a Tree
Steps:

1 Create a TFile1. Create a TFile 
2. Create a TTree
3 Add TB h t th TT3. Add TBranch to the TTree
4. Fill the tree
5. Write the file
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Example macro
void WriteTree()
{

Event *myEvent = new Event();Event *myEvent = new Event();
TFile f("AFile.root");
TTree *t = new TTree("myTree","A Tree"); 
t->Branch("EventBranch", myEvent);
for (int e=0;e<100000;++e) {

myEvent->Generate();  // hypotheticaly (); // yp
t->Fill();

}
t->Write();t->Write();

}
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Step 1: Create a TFile Object

Trees can be huge need fileTrees can be huge need file 
for swapping filled entries

TFile *hfile = new TFile("AFile.root");
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Step 2: Create a TTree Object

The TTree constructor:
Tree name (e g "myTree")– Tree name (e.g. myTree ) 

– Tree title

TTree *tree = new TTree("myTree","A Tree");
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Step 3: Adding a Branch

• Branch name• Branch name
• Pointer to the object 

Event *myEvent = new Event();
myTree->Branch("eBranch", myEvent);
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y ( , y );



Step 4: Fill the Tree 
• Create a for loop 

Assign al es to the object• Assign values to the object 
contained in each branch

• TTree::Fill() creates a new 
entry in the tree: snapshot of 
values of branches’ objects

f (i t 0 <100000 ++ ) {for (int e=0;e<100000;++e) {
myEvent->Generate(e); // fill event
myTree->Fill();       // fill the tree
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}



Step 5: Write Tree To File

myTree->Write();
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Reading a TTree
• Looking at a tree

Ho to read a tree• How to read a tree
• Friends and chains
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Example macro
void ReadTree()
{
Event *myEvent = 0;Event myEvent  0;
TFile f("AFile.root");
TTree *myTree = (TTree*)f->Get("myTree");
T >S tB hAdd ("E tB h"myTree->SetBranchAddress("EventBranch",

myEvent);
for (int e=0;e<100000;++e) {

myTree->GetEntry(e);
myEvent->Analyze();

}}
}

Th i t ( E t) MUST b t t 0
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The pointer (myEvent) MUST be set to 0



How to Read a TTree

Example:Example:

1. Open the Tfile
TFile f("AFile.root")

OR
2. Get the TTree

TTree *myTree = 0;
f G tObj t(" T "f.GetObject("myTree",
myTree)
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How to Read a TTree
3. Create a variable pointing to the data
root [] Event *myEvent = 0;

4. Associate a branch with the variable:
root [] myTree->SetBranchAddress("eBranch", myEvent);

5 R d t i th TT5. Read one entry in the TTree
root [] myTree->GetEntry(0) 
root [] myEvent->GetTracks()->First()->Dump()[] y () () p()
==> Dumping object at: 0x0763aad0, name=Track, 

class=Track
fPx            0.651241    X component of the momentum
fPy            1.02466     Y component of the momentum
fPz            1.2141      Z component of the momentum
[...]
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Branch Access Selection
• Use TTree::SetBranchStatus() to activate only 

the branches holding wanted variables.g
• Speed up considerably the reading phase 

0TClonesArray* myMuons = 0;
// disable all branches
myTree->SetBranchStatus("*", 0);y
// re-enable the "muon" branches
myTree->SetBranchStatus("muon*", 1);
myTree->SetBranchAddress("muon" myMuons);myTree >SetBranchAddress( muon ,myMuons);
// now read (access) only the "muon" branches
myTree->GetEntry(0);
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Looking at the Tree
TTree::Print() shows the data layout

root [] TFile f("AFile.root")
root [] myTree->Print();
******************************************************************************
*Tree    :myTree    : A ROOT tree                                            *
*Entries :       10 : Total =          867935 bytes  File  Size =     390138 *
*        :          : Tree compression factor =   2.72                       *
******************************************************************************
*Branch  :eBranch                                                        *
*Entries :       10 : BranchElement (see below)                              *
*............................................................................*
*Br    0 :fUniqueID :                                                        *
*Entries :       10 : Total  Size=        698 bytes  One basket in memory    *y y
*Baskets :        0 : Basket Size=      64000 bytes  Compression=   1.00     *
*............................................................................*
…
…
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Looking at the Tree
TTree::Scan("leaf:leaf:….") shows the values
root [] myTree->Scan("fNseg:fNtrack"); > scan.txt[] y ( g );

root [] myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","", 
"colsize=13 precision=3 col=13:7::15.10");

******************************************************************************
* Row * Instance * fEvtHdr.fDate * fNtrack *           fPx *             fPy *
******************************************************************************
* 0 * 0 * 960312 * 594 * 2.07 * 1.459911346 *   0         0         960312      594           2.07      1.459911346 
*   0 *        1 *        960312 *     594 *         0.903 *   -0.4093382061 *
*   0 *        2 *        960312 *     594 *         0.696 *    0.3913401663 *
*   0 *        3 *        960312 *     594 *        -0.638 *     1.244356871 *
*   0 *        4 *        960312 *     594 *        -0.556 *   -0.7361358404 *
*   0 *        5 *        960312 *     594 *         -1.57 *   -0.3049036264 *
*   0 *        6 *        960312 *     594 *        0.0425 *    -1.006743073 *
*   0 *        7 *        960312 *     594 *          -0.6 *    -1.895804524 *
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TTree Selection Syntax

Prints the first 8 variables of the tree.
MyTree->Scan();

Prints all the variables of the tree.
S l t ifi i bl

MyTree->Scan("*");

Select specific variables: 

Prints the values of var1 var2 and var3
MyTree->Scan("var1:var2:var3");

Prints the values of var1, var2 and var3.
A selection can be applied in the second argument:

MyTree->Scan("var1:var2:var3" "var1>0");

Prints the values of var1, var2 and var3 for the entries 
where var1 is greater than 0

MyTree >Scan( var1:var2:var3 , var1>0 );
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e e a s g ea e a 0
Use the same syntax for TTree::Draw()



Looking at the Tree
TTree::Show(entry_number) shows the values 

for one entry

root [] myTree->Show(0);
======> EVENT:0
eBranch         = NULL
fUniqueID       = 0
fBits           = 50331648
[ ][...]
fNtrack         = 594
fNseg           = 5964
[...]
fEvtHdr.fRun    = 200
[...]
fTracks.fPx     = 2.066806, 0.903484, 0.695610, -0.637773,...
fTracks.fPy = 1.459911, -0.409338, 0.391340, 1.244357,...
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TChain: the Forest
• Collection of TTrees: list of ROOT files containing 

the same tree
• Same semantics as TTree
As an example, assume we have three files called 

fil 1 t fil 2 t fil 3 t E h t i tfile1.root, file2.root, file3.root. Each contains tree 
called "T". Create a chain:
TChain chain("T"); // argument: tree name
chain.Add("file1.root");
chain Add("file2 root");chain.Add( file2.root );
chain.Add("file3.root");

Now we can use the TChain like a TTree!
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Now we can use the TChain like a TTree!



T(3)
TChain

T(3)
file3.root

T(2)
file2.root

T(1)T(1)
file1.root

chain files together
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Data Volume & Organisation
100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree TChain

• A TFile typically contains 1 TTree
• A TChain is a collection of TTrees or/and TChains
• A TChain is typically the result of a query to a file 

catalog
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Tree Friends
t

tree_1 tree_2

tree

n x

i ja b c
o p

i j

k l x

TFile f1("tree1.root");
t AddF i d("t 1" "t 2 t")

q r

tree.AddFriend("tree_1", "tree2.root")
tree.AddFriend("tree_2", "tree3.root");
tree.Draw("x:a", "k<c");
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tree.Draw("x:tree_2.x", "sqrt(p)<b");



Summary: Trees, basics
• TTree is one of the most powerful collections 

available for HEP
• Extremely efficient for huge number of data 

sets with identical layoutsets with identical layout
• Very easy to look at TTree - use TBrowser!

W it d (WORM) id l f• Write once, read many (WORM) ideal for 
experiments' data

• Still: extensible, users can add their own tree 
as friend
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Splitting

Split level = 0 Split level = 99
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Splitting
• Creates one branch per member – recursively
• Allows to browse objects that are stored in j

trees, even without their library
• Makes same members consecutive, e.g. for , g

object with position in X, Y, Z, and energy E, 
all X are consecutive, then come Y, then Z, 

ffthen E. A lot higher zip efficiency!
• Fine grained branches allow fain-grained I/O -

read only members that are needed, instead 
of full object
S STL i !
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• Supports STL containers, too!



Splitting
Setting the split level (default = 99)

Split level = 0 Split level = 99

CSC08 • ROOT 132

tree->Branch("EvBr", &event, 64000, 0 );



Performance Considerations
A split branch is:
• Faster to read - the type does not have to beFaster to read the type does not have to be 

read each time
• Slower to write due to the large number of• Slower to write due to the large number of 

branches
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Analyzing TreesAnalyzing Trees

Selectors, Analysis, PROOF
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Recap
TTree efficient storage and access

for huge amounts of structured datag
Allows selective access of data
TTree knows its layoutTTree knows its layout

Almost all HEP analyses based on TTree
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TTree Data Access
TSelector: generic "TTree based analysis"
Derive from it ("TMySelector")Derive from it ( TMySelector )
ROOT invokes TSelector's functions,
U d b t P (TS l t * )Used e.g. by tree->Process(TSelector*,…), 

PROOF
Functions called are virtual, thus TMySelector's 

functions called.
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TSelector
Steps of ROOT using a TSelector:
1 setup Init(TTree*)1. setup Init(TTree )

called to inform selector about tree
2 start SlaveBegin()2. start SlaveBegin()

called to create histograms
3 P (L 64 t)3. run Process(Long64_t)

called for each entry to load and analyze it
4. end Terminate()

called to fit histograms, write them to files,…
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TTree Data Access
E.g. 

Init(tree)

tree->Process("MySelector.C+")

SlaveBegin()

Init(tree)

SlaveBegin()

Process(i)Process(i)

t t ?
yes

T i t ()

next entry?
no

y
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Terminate()



TSelector: Usage
• Init(TTree* tree):

e.g. TMySelector::fChain = tree.g y
Set branch addresses.

• SlaveBegin(): create histogramsSlaveBegin(): create histograms
• Process(Long64_t entry):

fChain >GetTree() >GetEntry(entry);fChain->GetTree()->GetEntry(entry);
fill histograms
T i t () fit hi t• Terminate(): fit; save histograms
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Analysis Example
Determine trigger efficiencies from data, typical 

ingredient in analysesg y
Trigger selection before writing data: not all 

events availableevents available
Usually higher energy is taken, lower is ignored
E l 15G V t i t ithExample 15GeV muon trigger: events with a 

muon > 15GeV transverse momentum ("pT") 
d dare recorded.

muon p muon pT
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Ideal Trigger
Efficiency: probability to record an event with a 

given (transverse) muon momentumg ( )

eff = triggered/all none alleff = triggered/all

Ideal 15GeV
muon trigger
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Trigger Example
Example for a trigger from STAR @ BNL

Main properties:
l t• plateau

• turn-on
• minimum
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Trigger Efficiency From Data
Look at data triggered by 15GeV muon trigger:
for each event's muon:for each event s muon:

T=triggered, N=not triggered
{T} {NTN}{TT}{TNT}{NT}{TT}{T} {NTN}{TT}{TNT}{NT}{TT}…

But this sample doesn't see {N}, {NN}, {NNN},…
eff = |T| / all = |T| / (|T| + |N|)
But |N| unknown! Cannot determine efficiency!| | y
Instead: need muons that are independent of 

trigger ("unbiased")
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Dice And Tag / Probe
Think of two dice

Want probability for "6" ("6" trigger efficiency)
H l t i d d t ll lt h 1 "6"Have only triggered data, all results have >1 "6"

{1,6}, {6,4}, {6,6}, {1,6},…

Solution: one die has 6, the other is unbiased!,

Result: N N T N will yield 1/6
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Result: N, N, T, N,… will yield 1/6



Muons And Tag / Probe
Solution: events with >1 muon
For each muon:For each muon:

if exists other muon causing trigger:
thi i bi d!this muon is unbiased!

Need trigger decision stored with data, as in:
"other muon caused the 15GeV muon trigger"other muon caused the 15GeV muon trigger

CSC08 • ROOT 145CSC08 • ROOT 145



Get Data From TTree
In TSelector::Init(tree) select branches and 

connect tree with our member fMuons:
TTree* t = fChain->GetTree();
t->SetBranchStatus("*", 0); // all off
t >S tB hSt t (" *" 1) // b tt->SetBranchStatus("muons*", 1); // but muons
t->SetBranchAddress("muons", fMuons);

TTree::GetEntry(i) will load data from branch 
muons into fMuons; can access data via 
fMuons TMySelector

fMuons

TREE
muons
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TClonesArray
fMuons could be TClonesArray:
TClonesArray* fMuons; // array of TMuony ; // y
class TMuon: public TObject {
public:
...
float Pt() const;
bool  Mu15() const; // triggered

Print pT of the i th muon:

};

Print pT of the i-th muon:
TMuon* muon = (TMuon*) fMuons->At(i); 
cout << muon->Pt() << endl;
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cout << muon >Pt() << endl;



Determine Efficiency
Take a random muon number i ("probe")
Check that another muon ("tag") has causedCheck that another muon ( tag ) has caused 

trigger, then:
++ all[probe >pT()]++ all[probe->pT()]
if probe muon has triggered:

++fired[probe->pT()]
efficiency[pT] = fired[pT] / all[pT]y[p ] [p ] [p ]
Counting in pT-bins – use histogram
Division: binomial errors check Wikipedia ; )
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Division: binomial errors, check Wikipedia ;-)



Result
Dividing probes / tags yields sampled efficiency
"Bumpy" because of low numbers of eventsBumpy  because of low numbers of events
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Statistics, Or: We Know Better!
Sampling "known" distribution
Influenced by statisticsInfluenced by statistics

Missing data

Not monotonic!
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Fit
Combine our knowledge with statistics / data by

fitting a distribution:g

1 Find appropriate1. Find appropriate
function with
parametersparameters

2. Fit function to
distribution
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Fitting: The Function
Finding the proper function involves:
• behavioral analysis:behavioral analysis:

starts at 0, goes to constant, monotonic,…
• physics interpretation:• physics interpretation:

"E proportional to sin^2(phi)"
h i d k l d f t i l f ti• having a good knowledge of typical functions 
(see TMath)

• finding a good compromise between 
generalization ("constant") and precision 
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("polynomial 900th degree")



Fitting: The Function
Finding the proper function involves:
• behavioral analysis:behavioral analysis:

starts at 0, goes to constant, monotonic,…
• physics interpretation:• physics interpretation:

"E proportional to sin^2(phi)"
h i d k l d f t i l f tiMAGIC• having a good knowledge of typical functions 
(see TMath) MAGIC

• finding a good compromise between 
generalization ("constant") and precision 
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("polynomial 900th degree")



Fitting: Parameters
Let's take "erf" erf(x)/2.+0.5

Free parameters:
(erf((x-[0])/[1])/2.+0.5)*[2]

[0]: x @ center of the slope
[1]: width of the slope[1]: width of the slope
[2]: maximum efficiency

[0]

[2]

How do I know?
[0]
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Study function behavior [1]



Fitting: Parameter Init
Need to initialize parameters!
sensible: [0]: 35 [1]: 10 [2]: 1sensible: [0]: 35, [1]: 10, [2]: 1
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Fitting: The Math
Fitting = finding parameters such that

f(x) – hist(x)( ) ( )
minimal for all x [or any similar measure]

Histogram with errors:
f(x) – hist(x) / err(x)
[or similar]
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Fitting In ROOT
Define fit function:
TF1* f = new TF1("myfit",
"(TMath::Erf((x-[0])/[1])/2.+0.5)*[2]"
0., 100.);

Set parameters:
f->SetParameter(0 35 );f >SetParameter(0, 35.);
f->SetParameter(1, 10.);
f->SetParameter(2,  1.);

Fit it to the histogram:
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hist->Fit(f);



Fitting Result
Result of fit printed or
cout << f->GetParameter(0) << endl;

[0]: 34 9

cout << f >GetParameter(0) << endl;

[0]: 34.9
[1]: 12.1
[2]: 0.98

which means:
(TMath::Erf((x-34.9)/12.1)/2.+0.5)*0.98
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Get efficiency at pT=42GeV: f->Eval(42.)



Analysis: Recap
We started with the trigger problem – and 

ended with an answer

You now knowYou now know
• how to determine trigger efficiency from 

t i d d ttriggered data
• why large samples are relevant
• what fitting is, how it works, when to do it, and 

how it's done with ROOT.
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Interactive Data Analysis with
PROOF

Bleeding Edge Physics with
Bleeding Edge ComputingBleeding Edge Computing



Parallel Analysis: PROOF
Some numbers (from Alice experiment)
• 1 5 PB (1 5 * 1015) of raw data per year1.5 PB (1.5  10 ) of raw data per year
• 360 TB of ESD+AOD* per year (20% of raw)

O t 15 MB/ ill t k 9 th !• One pass at 15 MB/s will take 9 months!

Parallelism is the only way out!
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* ESD: Event Summary Data     AOD: Analysis Object Data



PROOF
Huge amounts of events, hundreds of CPUs
Split the job into N events / CPU!p j
PROOF for TSelector based analysis:
• start analysis locally ("client")start analysis locally ( client ), 
• PROOF distributes data and code,
• lets CPUs ("workers") run the analysis• lets CPUs ( workers ) run the analysis,
• collects and combines (merges) data,

h l i lt l ll• shows analysis results locally
• More dynamic than a batch system
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Including on-the-fly status reports!



Interactive!
• Start analysis
• Watch status while runningWatch status while running
• Forgot to create a histogram?

Interr pt the process– Interrupt the process
– Modify the selector

R t t th l i– Re-start the analysis
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PROOF

Storage

PROOF fCli t PROOF farmcommands,commands,
scriptsscripts

Client

MASTER
list of outputlist of output

objectsobjects
(histograms, …)(histograms, …)
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Workers



Creating a session
To create a PROOF session from the ROOT
prompt just type:prompt, just type: 

TProof *p = TProof::Open("master")

where "master" is the hostname of the master 
machine on the PROOF cluster
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PROOF Analysis
• Example of local TChain analysis
// Create a chain of trees

PROOF

// Create a chain of trees
root[0] TChain *c = new TChain("myTree");
root[1] c->Add("http://www.any.where/file1.root");
root[2] c->Add("http://www.any.where/file2.root");PROOFroot[2] c >Add( http://www.any.where/file2.root );

// MySelector is a TSelector
root[3] c->Process("MySelector.C+");y
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PROOF Analysis
• Same example with PROOF
// Create a chain of trees// Create a chain of trees
root[0] TChain *c = new TChain("myTree");
root[1] c->Add("http://www.any.where/file1.root");
root[2] c->Add("http://www.any.where/file2.root");root[2] c >Add( http://www.any.where/file2.root );

// Start PROOF and tell the chain to use it
root[3] TProof::Open("masterURL");p
root[4] c->SetProof();

// Process goes via PROOF
root[5] c->Process("MySelector.C+");
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TSelector & PROOF
• Begin() called on the client only
• SlaveBegin() called on each worker: createSlaveBegin() called on each worker: create 

histograms
• SlaveTerminate() rarely used; post• SlaveTerminate() rarely used; post 

processing of partial results before they are 
sent to master and mergedsent to master and merged

• Terminate() runs on the client: save results, 
di l hi tdisplay histograms, … 
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PROOF Analysis
output listSelector (worker)

SlaveBegin()
•Create histos, …
•Define output list

Process()

preselection analysisOK
SlaveTerminate()

•Post-processing

event
branch

nSelector (client)

branch

leaf

leafleaf

branch

branch

leaf leaf

Begin() Terminate()
•Final analysis
(fitting, saving …)

leafleaf

1 2 n lastChain
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loop over events



Output List (result of the query)
• Each worker has a partial output list
• Objects have to be added to the list in j

TSelector::SlaveBegin() e.g.:
fHist = new TH1F("h1", "h1", 100, -3., 3.);

• At the end of processing the output list gets

fHist  new TH1F( h1 , h1 , 100, 3., 3.);
fOutput->Add(fHist);

At the end of processing the output list gets 
sent to the master

• The Master merges objects and returns themThe Master merges objects and returns them 
to the client. Merging is e.g. "Add()" for 
histograms, appending for lists and trees
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Results

At the end of Process() the output list isAt the end of Process(), the output list is 
accessible via gProof->GetOutputList()

// Get the output list
root[0] TList *output = gProof->GetOutputList();
// Retrieve 2D histogram "h2"

1 2 2 2 2root[1] TH2F *h2 = (TH2F*)output->FindObject("h2");
// Display the histogram
root[2] h2->Draw();
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PROOF GUI Session
Starting a PROOF GUI session is trivial:

O GUI

TProof::Open()

Opens GUI:
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PROOF GUI Session – Results
Results accessible via TSessionViewer, too:
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PROOF Documentation
Documentation available online at

root cern ch/twiki/bin/view/ROOT/PROOFroot.cern.ch/twiki/bin/view/ROOT/PROOF
But of course you need a little cluster of CPUs

Like your multicore laptop!Like your multicore laptop!
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Summary
You've learned:
• analyzing a TTree can be easy and efficientanalyzing a TTree can be easy and efficient
• integral part of physics is counting

ROOT id hi t i d fitti• ROOT provides histogramming and fitting
• > 1 CPU: use PROOF!

Looking forward to hearing from you:Looking forward to hearing from you:
• as a user (help! bug! suggestion!)

d d l !
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• and as a developer!


