
ROOTROOT
Bertrand Bellenot, Axel Naumann

CERNCERN

What's ROOT?

CSC08 • ROOT 2

What's ROOT?

CSC08 • ROOT 3

What's ROOT?

CSC08 • ROOT 4

What's ROOT?

CSC08 • ROOT 5

ROOT: An Open Source Project
• Started in 1995
• 11 full time developers at CERN plus11 full time developers at CERN, plus

Fermilab, Agilent Tech, Japan, MIT (one
each)each)

• Large number of part-time developers: let
users participateusers participate

• Available (incl. source) under GNU LGPL

CSC08 • ROOT 6

ROOT in a Nutshell
F k f l l d h dliFramework for large scale data handling
Provides, among others,

– an efficient data storage, access and query
system (PetaBytes)

(– advanced statistical analysis algorithms (multi
dimensional histogramming, fitting, minimization
and cluster finding)and cluster finding)

– scientific visualization: 2D and 3D graphics,
Postscript PDF LateXPostscript, PDF, LateX

– geometrical modeller
– PROOF parallel query engine

CSC08 • ROOT 7

– PROOF parallel query engine

Graphics

CSC08 • ROOT 8

Histogramming
• Histogram is just occurrence counting, i.e.

how often they appeary pp
• Example: {1,3,2,6,2,3,4,3,4,3,5}

CSC08 • ROOT 9

Histogramming
• How is a Real Histogram Made?

Lets consider the age distribution of the g
participants:

Binning:

Grouping ages ofGrouping ages of
participants in
several categoriesseveral categories
(bins)

CSC08 • ROOT 10

Histogramming
Table of Ages
(binned)

Shows distribution of ages, total number of
entries (57 participants) and average: 27

CSC08 • ROOT 11

entries (57 participants) and average: 27
years 10 months 6 days…

Histograms
Analysis result: often a histogram

Menu:
View / EditorView / Editor

CSC08 • ROOT 12

Fitting
Analysis result:

often a fit
based on a
histogramg

CSC08 • ROOT 13

Fit
Function describing the distribution of data
Fit = optimization in parameters,p p ,

e g Gaussian
2

2

]2[2
])1[(

]0[)(⋅
−

−

⋅=
x

exfe.g. Gaussian
For Gaussian: [0] = "Constant"

[1] = "Mean"

]0[)(exf

[1] Mean
[2] = "Sigma" / "Width"

Objective: choose parameters [0], [1], [2] to get
function as close as possible to histogram

CSC08 • ROOT 14

function as close as possible to histogram

Fit

[2] (sigma)

Gaussian fit over our histogram:

[0] (constant)

2])1[(−x

[0] (constant)

2]2[2
])[(

]0[)(⋅
−

⋅= exf

CSC08 • ROOT 15
[1] (mean)

Fit Panel
To fit a histogram:
right click histogramright click histogram,
"Fit Panel"

Straightforward interface
for fitting!

CSC08 • ROOT 16

2D/3D
We have seen 1D histograms, but there are
also histograms in more dimensionsalso histograms in more dimensions.

CSC08 • ROOT 17

2D Histogram 3D Histogram

2D Fitting
Example of a fit over a 2D histogram

CSC08 • ROOT 18

OpenGL
• OpenGL can be used to render 2D & 3D

histograms, functions, parametric equations,
and to visualize 3D objects (geometry)

CSC08 • ROOT 19

OpenGL

CSC08 • ROOT 20

Geometry
• Describes complex detector geometries
• Allows visualization of these detectorAllows visualization of these detector

geometries with e.g. OpenGL
• Optimized particle transport in complex• Optimized particle transport in complex

geometries
W ki i l ti ith i l ti• Working in correlation with simulation
packages such as GEANT3, GEANT4 and
FLUKAFLUKA

CSC08 • ROOT 21

Geometry

CSC08 • ROOT 22

EVE (Event Visualization Environment)
• Event: Collection of data from a detector (hits,

tracks, …),)
Use EVE to:
• Visualize these physics objects together with• Visualize these physics objects together with

detector geometry (OpenGL)
Vi ll i t t ith th d t l t• Visually interact with the data, e.g. select a
particular track and retrieve its physical

tiproperties

CSC08 • ROOT 23

EVE

CSC08 • ROOT 24

Math TMVA

SPlot

CSC08 • ROOT 25

Multivariate Analysis
• Consider this simple question: How to

estimate someone’s life expectancy? p y
• This depends on many variables:

Life style Sex (m/f)

Country
(region)

Life style Sex (m/f)

Life
expectancy

Genetics Income

expectancy

CSC08 • ROOT 26

…

Multivariate Analysis
• Many variables? Parallel Coordinates

• This will not help to solve the problem, it only
allows to visualize multiple variables

CSC08 • ROOT 27

allows to visualize multiple variables

Multivariate Analysis
• Sample described by k variables (that are

found to be discriminating)
• Samples can be classified

into n categories: H1 … Hn
H2

x2

1 n
• E.g.

– H1 : life exp. < 40
H1

H31 p
– H2 : life exp. 40..60
– H3 : life exp. > 60

x1
Example: k=2, n=3

• Example: k=2 variables x1, x2
n=3 categories H1, H2, H3

CSC08 • ROOT 28

g 1, 2, 3

Multivariate Analysis
Problem: Find boundaries between H1, H2, and

H3 such that f(x) returns the category of x with 3 () g y
maximum correctness

Non-linear BoundariesLinear Boundaries ?Rectangular Cuts ?

H2
x2H2

x2H2
x2

H1
H3

H1
H3

H1
H3

x1x1x1

Simple example I can do it by hand.

Large input variable space, complex

CSC08 • ROOT 29

g p p p
correlations: manual optimization very difficult

Multivariate Analysis
Generic problem: find category for set of values
To make such an estimation we need twoTo make such an estimation, we need two

phases:
• (Supervised) learning / training phase:• (Supervised) learning / training phase:

– Take samples for which categories are known
M hi d t t i th ll t l ifi ti– Machine adapts to give the smallest classification
error on training sample

P i h• Processing phase:
– The trained system can now analyze and produce

t t f l
CSC08 • ROOT 30

output for any new sample

TMVA
• Framework offering a collection of data mining

tools, e.g. NN (Neural Network), GA (Genetic , g (), (
Algorithm), …

• In HEP mostly two class problems – signal (S)• In HEP mostly two class problems – signal (S)
and background (B)
– Physics processes
– Finding physics objects
– Detector readout
– ...

CSC08 • ROOT 31

Interlude: HELP!
ROOT is a framework – only as good as its

documentation.
User's Guide (it has your answers!)

h // hhttp://root.cern.ch
“What is TNamed? What functions does itWhat is TNamed? What functions does it

have?”
R f G idReference Guide

http://root cern ch/root/html
CSC08 • ROOT 32CSC08 • ROOT 32

http://root.cern.ch/root/html

Let's fire up ROOT!

CSC08 • ROOT 33CSC08 • ROOT 33

Setting Up ROOT
Before starting ROOT:

setup environment variables $PATH, p $,
$LD_LIBRARY_PATH

Go to where ROOT is:
$ d / th t / t

(ba)sh:

$ cd /path-to/root

$. bin/thisroot.sh(ba)sh:
(t)csh: $ source bin/thisroot.csh

$. bin/thisroot.sh

CSC08 • ROOT 34CSC08 • ROOT 34

Starting Up ROOT
ROOT is prompt-based
$ root$ root
root [0] _

Prompt speaks C++p p

root [0] gROOT->GetVersion();↵
(t h * 0 5 f7 8)"5 16/00"(const char* 0x5ef7e8)"5.16/00"

CSC08 • ROOT 35CSC08 • ROOT 35

ROOT As Pocket Calculator
Calculations:

t [0] t(42)root [0] sqrt(42)
(const double)6.48074069840786038e+00

t [1] d bl l 0 17root [1] double val = 0.17;
root [2] sin(val)
(const double)1.69182349066996029e-01

Uses C++ Interpreter CINT

CSC08 • ROOT 36CSC08 • ROOT 36

Running Code
To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:

[] y

root [0] .L mycode.C
root [1] mycode()

Quit:
root [0] .q

All of CINT's commands (help):
t [0] h

[] q

CSC08 • ROOT 37CSC08 • ROOT 37

root [0] .h

ROOT Prompt
Why C++ and not a scripting language?!
You'll write your code in C++ too Support forYou ll write your code in C++, too. Support for
python, ruby,… exists.

Why a prompt instead of a GUI?Why a prompt instead of a GUI?

ROOT is a programming framework, not an
ffi it U GUI h d doffice suite. Use GUIs where needed.

CSC08 • ROOT 38CSC08 • ROOT 38

Running Code
Macro: file that is interpreted by CINT (.x)

int mymacro(int value)
{{
int ret = 42;
ret += value;ret + value;
return ret;

}

E t ith (42)

}

CSC08 • ROOT 39CSC08 • ROOT 39

Execute with .x mymacro.C(42)

Compiling Code: ACLiC
Load code as shared lib, much faster:
.x mymacro.C++(42)

Uses the system's compiler, takes seconds

.x mymacro.C++(42)

Subsequent .x mymacro.C+(42) check for
changes, only rebuild if needed

Exactly as fast as e.g. Makefile based stand-
alone binary!y

CINT knows types, functions in the file, e.g. call

CSC08 • ROOT 40CSC08 • ROOT 40

mymacro(43)

Compiled versus Interpreted
Why compile?
Faster execution CINT has limitationsFaster execution, CINT has limitations,
validate code.

Why interpret?
Faster Edit → Run → Check result → EditFaster Edit Run Check result Edit
cycles ("rapid prototyping").
Scripting is sometimes just easier.Scripting is sometimes just easier.

Are Makefiles dead?

CSC08 • ROOT 41CSC08 • ROOT 41

Yes! ACLiC is even platform independent!

A Little C[++]
Hopefully many of you know – but some don't.
• Object constructor assignmentObject, constructor, assignment
• Pointer, reference

S d t t• Scope, destructor
• Stack vs. heap
• Inheritance, virtual functions

If you use C++ you have to understand these
concepts!

CSC08 • ROOT 42CSC08 • ROOT 42

concepts!

Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond;
mySecond = myObject;mySecond myObject;
cout << mySecond.GetName() << endl;

CSC08 • ROOT 43CSC08 • ROOT 43

Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond;
mySecond = myObject;mySecond myObject;
cout << mySecond.GetName() << endl;

Creating objects:
1. Constructor TNamed::TNamed(const1. Constructor TNamed::TNamed(const

char*, const char*)
2 Default constructor TNamed::TNamed()
CSC08 • ROOT 44CSC08 • ROOT 44

2. Default constructor TNamed::TNamed()

Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond;
mySecond = myObject;mySecond myObject;
cout << mySecond.GetName() << endl;

3. Assignment:
myObjectmySecond

TNamed:
fName "name"
fTitle "title"

y j
TNamed:
fName ""
fTitle ""

y

CSC08 • ROOT 45CSC08 • ROOT 45

fTitle "title"fTitle ""

Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond;
mySecond = myObject;mySecond myObject;
cout << mySecond.GetName() << endl;

3. Assignment: creating a twin
myObjectmySecond

= TNamed:
fName "name"
fTitle "title"

TNamed:
fName ""
fTitle ""

TNamed:
fName "name"
fTitle "title"

y jy

CSC08 • ROOT 46CSC08 • ROOT 46

fTitle "title"fTitle "" fTitle "title"

Objects, Constructors, =
Look at this code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond;
mySecond = myObject;mySecond myObject;
cout << mySecond.GetName() << endl;

4. New content
mySecond

output:TNamed:
fName "name"
fTitle "title"

y

"name"

CSC08 • ROOT 47CSC08 • ROOT 47

fTitle "title"

Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
cout << pMySecond->GetName() << endl;

Pointer declared with "*", initialize to 0

CSC08 • ROOT 48CSC08 • ROOT 48

Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
cout << pMySecond->GetName() << endl;

myObject
Assignment: point to myObject; no copy

TNamed:
fName "name"
fTitle "title"

y j

= & [address]
pMySecond

fTitle "title"

CSC08 • ROOT 49CSC08 • ROOT 49

Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
cout << pMySecond->GetName() << endl;

Assignment: "&" creates reference:
myObject

= & TNamed:
fName "name"
fTitle "title"

[address]

y j
pMySecond

CSC08 • ROOT 50CSC08 • ROOT 50

fTitle "title"

Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
cout << pMySecond->GetName() << endl;

Access members of value pointed to by "->"Access members of value pointed to by >

CSC08 • ROOT 51CSC08 • ROOT 51

Pointer, Reference
Modified code:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
cout << (*pMySecond).GetName() << endl;

Or dereference pointer by "*"Or dereference pointer by
and then access like object with "."

CSC08 • ROOT 52CSC08 • ROOT 52

Pointer, Reference
Changes propagated:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed* pMySecond = 0;
pMySecond = &myObject;pMySecond &myObject;
pMySecond->SetName("newname");
cout << myObject GetName() << endl;

Pointer forwards to object

cout << myObject.GetName() << endl;

Pointer forwards to object
Name of object changed – prints "newname"!

CSC08 • ROOT 53CSC08 • ROOT 53

Object vs. Pointer
Compare object:
TNamed myObject("name", "title");TNamed myObject(name , title);
TNamed mySecond = myObject;
cout << mySecond GetName() << endl;

t i t

cout << mySecond.GetName() << endl;

to pointer:
TNamed myObject("name", "title");
TNamed* pMySecond = &myObject;
cout << pMySecond->GetName() << endl;

CSC08 • ROOT 54CSC08 • ROOT 54

Object vs. Pointer: Parameters
Calling functions: object parameter obj gets

copied void funcO(TNamed obj);p
for function
call!

void funcO(TNamed obj);

TNamed myObject;
funcO(myObject);

Pointer parameter: only address passed

funcO(myObject);

Pointer parameter: only address passed,
no copy void funcP(TNamed* ptr);

TNamed myObject;
funcP(&myObject);

CSC08 • ROOT 55CSC08 • ROOT 55

Object vs. Pointer: Parameters
Functions changing parameter: funcO can only

access copy! void funcO(TNamed obj){py
caller not
changed!

void funcO(TNamed obj){
obj.SetName("nope");

}g
funcO(caller);

Using pointers (or references) funcP can
change void funcP(TNamed* ptr){
caller

(p){
ptr->SetName("yes");

}

CSC08 • ROOT 56CSC08 • ROOT 56

funcP(&caller);

Scope
Scope: range of accessibility and C++ "life".
Birth: constructor death: destructorBirth: constructor, death: destructor
{ // birth: TNamed() called
TNamed n;TNamed n;

} // death: ~TNamed() called

Variables are valid / accessible only in scopes:
int a = 42;int a = 42;
{ int a = 0; }

t << << dl

CSC08 • ROOT 57CSC08 • ROOT 57

cout << a << endl;

Scope
Functions are scopes:
void func(){ TNamed obj; }void func(){ TNamed obj; }

func();
cout << obj << end; // obj UNKNOWN!

must not return
TNamed* func(){
TNamed obj;

pointers to
local variables!

TNamed obj;
return &obj; // BAD!

}

CSC08 • ROOT 58CSC08 • ROOT 58

}

Stack vs. Heap
So far only stack:
TNamed myObj("n","t");

Fast, but often < 10MB. Only survive in scope.

TNamed myObj(n , t);

Heap: slower GBs (RAM + swap) creation andHeap: slower, GBs (RAM + swap), creation and
destruction managed by user:

TNamed* pMyObj = new TNamed("n","t");
delete pMyObj; // or memory leak!

CSC08 • ROOT 59CSC08 • ROOT 59

Stack vs. Heap: Functions
Can return heap objects without copying:
TNamed* CreateNamed(){TNamed CreateNamed(){
// user must delete returned obj!
TNamed* ptr = new TNamed("n","t");

t b t TN d bj t till th h

TNamed ptr new TNamed(n , t);
return ptr; }

ptr gone – but TNamed object still on the heap,
address returned!
TNamed* pMyObj = CreateNamed();
cout << pMyObj->GetName() << endl;

CSC08 • ROOT 60CSC08 • ROOT 60

delete pMyObj; // or memory leak!

Inheritance
Classes "of same kind" can re-use functionality
E g TPlate TBowl both dishes:E.g. TPlate, TBowl both dishes:
class TPlate: public TDish {...};
class TBowl: public TDish { };

Can implement common functions in TDish:

class TBowl: public TDish {...};

Can implement common functions in TDish:
class TDish {
public:public:
void Wash();

};

CSC08 • ROOT 61CSC08 • ROOT 61

};

Inheritance: The Base
Use TPlate, TBowl as dishes:

assign pointer of derived to pointer of base g p p
"every plate is a dish"
TDish *a = new TPlate();TDish a new TPlate();
TDish *b = new TBowl();

But not every dish is a plate, i.e. the inverse
doesn't work. And a bowl is totally not a plate!y p
TPlate* p = new TDish(); // NO!
TPlate* q = new TBowl(); // NO!

CSC08 • ROOT 62CSC08 • ROOT 62

TPlate q new TBowl(); // NO!

Virtual Functions
Often derived classes behave differently:

class TDish {class TDish { ...
virtual bool ForSoup() const;

}};
class TPlate: public TDish { ...
bool ForSoup() const {return false;}

};
class TBowl: public TDish { ...
bool ForSoup() const {return true;}

CSC08 • ROOT 63CSC08 • ROOT 63

};

Pure Virtual Functions
But TDish cannot know! Mark as "not

implemented"p
class TDish { ...
virtual bool ForSoup() const = 0;virtual bool ForSoup() const 0;

};

Only for virtual functions.
Cannot create object of TDish anymore (oneCannot create object of TDish anymore (one

function is missing!)

CSC08 • ROOT 64CSC08 • ROOT 64

Calling Virtual Functions
Call to virtual functions evaluated at runtime:
void FillWithSoup(TDish* dish) {
if (dish->ForSoup())
dish->SetFull();

W k f t t d

();
}

Works for any type as expected:
TDish* a = new TPlate();
TDish* b = new TBowl();
FillWithSoup(a); // will not be full

CSC08 • ROOT 65CSC08 • ROOT 65

FillWithSoup(b); // is now full

Virtual vs. Non-Virtual
So what happens if non-virtual?
class TDish { ...class TDish { ...
bool ForSoup() const {return false;}

};

Will now always call TDish::ForSoup() i e false

};

Will now always call TDish::ForSoup(), i.e. false
void FillWithSoup(TDish* dish) {
if (di h F S ())if (dish->ForSoup())
dish->SetFull();

CSC08 • ROOT 66CSC08 • ROOT 66

}

Congrats!

You have earned yourself the
Fine print:
* c m s with lif lYou have earned yourself the
CSC08 ROOT C++ Diploma.
* comes with lifelong

subscription, p
From now on you may use
C++with t f li l t!*

p
this diploma is worth nothing

if not x cis d ula lyC++without feeling lost!*if not exercised regularly

CSC08 • ROOT 67CSC08 • ROOT 67

Summary
We know:
• why and how to start ROOTwhy and how to start ROOT
• C++ basics

th t d ith " "• that you run your code with ".x"
• can call functions in libraries
• can (mis-) use ROOT as a pocket calculator!

Lots for you to discover during next two lectures
and especially the exercises!

CSC08 • ROOT 68CSC08 • ROOT 68

and especially the exercises!

Saving DataSaving Data

Streaming, Reflection, TFile,
Schema EvolutionSchema Evolution

CSC08 • ROOT 69CSC08 • ROOT 69

Saving Objects
Cannot do in C++:
TNamed* o; TNamed* p;TNamed o; TNamed p;
o = new TNamed("name", "title");
std::write("file.bin", "obj1", o);
p = std::read("file.bin", "obj1");
p->GetName();

E.g. LHC experiments use C++ to manage data
Need to write C++ objects and read them backNeed to write C++ objects and read them back
std::cout not an option: 15PetaBytes / year of

processed data (i e data that will be read)
CSC08 • ROOT 70CSC08 • ROOT 70

processed data (i.e. data that will be read)

Saving Objects – Saving Types
What's needed?
TNamed* o;TNamed* o;
o = new TNamed("name", "title");
std::write("file.bin", "obj1", o);

Store data members of TNamed; need to know:

(, j ,)

1) type of object
2) data members for the type2) data members for the type
3) where data members are in memory
4) d th i l f it t di k
CSC08 • ROOT 71CSC08 • ROOT 71

4) read their values from memory, write to disk

Serialization
Store data members of TNamed: serialization
1) type of object: runtime-type-information RTTI1) type of object: runtime type information RTTI
2) data members for the type: reflection
3) h d t b i3) where data members are in memory:

introspection
4) read their values from memory, write to disk:

raw I/O

Complex task and C++ is not your friend

CSC08 • ROOT 72CSC08 • ROOT 72

Complex task, and C is not your friend.

Reflection
Need type description (aka reflection)
1 types sizes members1. types, sizes, members

class TMyClass {

TMyClass is a class. float fFloat;
Long64_t fLong;

Members:
"fFloat" type float size 4 bytes

};

– fFloat , type float, size 4 bytes
– "fLong", type Long64_t, size 8 bytes

CSC08 • ROOT 73CSC08 • ROOT 73

Platform Data Types
Fundamental data types (int, long,…):

size is platform dependentp p

Store "long" on 64bit platform writing 8 bytes:Store long on 64bit platform, writing 8 bytes:
00, 00, 00, 00, 00, 00, 00, 42

R d 32bit l tf "l " l 4 b tRead on 32bit platform, "long" only 4 bytes:
00, 00, 00, 00

Data loss, data corruption!

CSC08 • ROOT 74CSC08 • ROOT 74

, p

ROOT Basic Data Types
Solution: ROOT typedefs

Signed Unsigned sizeof [bytes]
h hChar_t UChar_t 1

Short_t UShort_t 2
Int_t UInt_t 4
Long64 t ULong64 t 8Long64_t ULong64_t 8
Double32_t float on disk,

double in RAM
CSC08 • ROOT 75CSC08 • ROOT 75

double in RAM

Reflection
Need type description (platform dependent)
1 types sizes members1. types, sizes, members
2. offsets in memory class TMyClass {

float fFloat;
Long64_t fLong;

re
ss – 16

– 14
};

l
a
s
s

y
A

dd
r

fLong– 12
– 10

8

T
M
y
C

em
or

y – 8
– 6
– 4

PADDING "fFloat" is at offset 0
"fL " i t ff t 8

CSC08 • ROOT 76CSC08 • ROOT 76

M
e fFloat– 2

– 0
"fLong" is at offset 8

I/O Using Reflection
members memory disk

es
s – 16

14

a
s
s

A
dd

re

fLong
– 14
– 12
– 10

T
M
y
C
l
a

m
or

y
A

– 8
– 6
– 4

PADDING

T

M
em fFloat

– 4
– 2
– 0

CSC08 • ROOT 77CSC08 • ROOT 77

C++ Is Not Java
Lesson: need reflection!
Where from?Where from?

J t d t b ithJava: get data members with
Class.forName("MyClass").getFields()

C++: get data members with BE CAREFUL

– oops. Not part of C++. THIS LANGUAGE
HAS NO BRAIN

USE YOUR OWN

CSC08 • ROOT 78CSC08 • ROOT 78

USE YOUR OWN

ROOT And Reflection
Simply use ACLiC:

L MyCode cxx+

C t lib ith fl ti d t ("di ti ")

.L MyCode.cxx+

Creates library with reflection data ("dictionary")
of all types in MyCode.cxx!

Dictionary needed for interpreter, tooy p ,
ROOT has dictionary for all its types

CSC08 • ROOT 79CSC08 • ROOT 79

Back To Saving Objects: TFile
ROOT stores objects in TFiles:

TFile* f = new TFile("file.root", "NEW");

TFile behaves like file system:
f->mkdir("dir");

TFile has a current directory:

f->mkdir(dir);

TFile compresses data ("zip"):

f->cd("dir");

TFile compresses data (zip):
f->GetCompressionFactor()
2.61442160606384277e00

CSC08 • ROOT 80CSC08 • ROOT 80

Saving Objects, Really
Given a TFile:
TFile* f = new TFile("file.root", "RECREATE");

W it bj t d i i f TObj t

(,);

Write an object deriving from TObject:
object->Write("optionalName")

"optionalName" or TObject::GetName()

Write any object (with dictionary):
f >W it Obj t(bj t " ")

CSC08 • ROOT 81CSC08 • ROOT 81

f->WriteObject(object, "name");

"Where Is My Histogram?"
TFile owns histograms, graphs, trees

(due to historical reasons):()
TFile* f = new TFile("myfile.root");
TH1F* h = new TH1F("h","h",10,0.,1.);(, , , ,)
h->Write();
TCanvas* c = new TCanvas();
c->Write();

h automatically deleted: owned by file

c >Write();
delete f;

h automatically deleted: owned by file.
c still there. names unique!

CSC08 • ROOT 82CSC08 • ROOT 82

TFile acts like a scope for hists, graphs, trees!

Risks With I/O
Physicists can loop a lot:
For each particle collisionFor each particle collision

For each particle created
F h d t t d lFor each detector module

Do something.
Physicists can loose a lot:
Run for hoursRun for hours…

Crash.
E thi l t

CSC08 • ROOT 83CSC08 • ROOT 83

Everything lost.

Name Cycles
Create snapshots regularly:

MyObject;1MyObject;1
MyObject;2
…
MyObject; 5427
MyObject

Write() does not replace but append!
but see documentation TObject::Write()

CSC08 • ROOT 84CSC08 • ROOT 84

but see documentation TObject::Write()

The "I" Of I/O
Reading is simple:

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
f->GetObject("h", h);
h->Draw();
delete f;

Remember:

delete f;

Remember:
TFile owns histograms!
file gone histogram gone!

CSC08 • ROOT 85CSC08 • ROOT 85

file gone, histogram gone!

Ownership And TFiles
Separate TFile and histograms:

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
TH1::AddDirectory(kFALSE);
f->GetObject("h", h);
h->Draw();h >Draw();
delete f;

… and h will stay around.

CSC08 • ROOT 86CSC08 • ROOT 86

Changing Class – The Problem
Things change:

class TMyClass {class TMyClass {
float fFloat;
Long64 t fLong;Long64_t fLong;

};

CSC08 • ROOT 87CSC08 • ROOT 87

Changing Class – The Problem
Things change:

class TMyClass {class TMyClass {
double fFloat;
Long64 t fLong;Long64_t fLong;

};

Inconsistent reflection data, mismatch in
memory, on disky,

Objects written with old version cannot be read
Need to store reflection with data to detect!
CSC08 • ROOT 88CSC08 • ROOT 88

Need to store reflection with data to detect!

Schema Evolution
Simple rules to convert disk to memory layout
1. skip removed membersp

Long64_t fLong;
file.root RAM

ignore

2 default-initialize added members

float fFloat; float fFloat;

2. default initialize added members

file.root Long64 t fLong;
RAMTMyClass(): fLong(0)

3 convert members where possible

float fFloat;
g _ g;

float fFloat;

CSC08 • ROOT 89CSC08 • ROOT 89

3. convert members where possible

Class Version
ClassDef() macro makes I/O faster, needed

when deriving from TObjectg j
Can have multiple class versions in same file
Use version number to identify layout:Use version number to identify layout:
class TMyClass: public TObject {
blipublic:
TMyClass(): fLong(0), fFloat(0.) {}
virtual ~TMyClass() {}
...
ClassDef(TMyClass,1); // example class

};

CSC08 • ROOT 90CSC08 • ROOT 90

};

Reading Files
Files store reflection and data: need no library!

function

call

CSC08 • ROOT 91CSC08 • ROOT 91

Powers of ROOT I/O
• Can even open
TFile("http://myserver.com/afile.root")(p y)
including read-what-you-need!

• Nice viewer for TFile: new TBrowserNice viewer for TFile: new TBrowser
• Combine contents of TFiles with
$ROOTSYS/bin/hadd$ROOTSYS/bin/hadd

CSC08 • ROOT 92CSC08 • ROOT 92

Summary
Big picture:
• you know ROOT files – for petabytes of datayou know ROOT files for petabytes of data
• you learned what schema evolution is

l d th t fl ti i k f I/O• you learned that reflection is key for I/O

Small picture:
• you can write your own data to filesyou can write your own data to files
• you can read it back

h th d fi iti f l
CSC08 • ROOT 93CSC08 • ROOT 93

• you can change the definition of your classes

ROOT Collection ClassesROOT Collection Classes

Collection Classes
ROOT collections polymorphic containers: hold

pointers to TObject, so:p j ,
• Can only hold objects that inherit from

TObjectTObject
• Return pointers to TObject, that have to be

cast back to the correct subclasscast back to the correct subclass
void DrawHist(TObjArray *vect, int at)
{{

TH1F *hist = (TH1F*)vect->At(at);
if (hist) hist->Draw();

}

CSC08 • ROOT 95

}

TObjArray
• Like vector<TObject *>, supports traditional

array semantics:y
– Objects can be directly accessed via an index

with the operator[]p []
– Expands automatically when objects are added

CSC08 • ROOT 96

TClonesArray
Array of objects of the

same class ("clones")()
Designed for repetitive

data analysis tasks:data analysis tasks:
same type of objects
created and deletedcreated and deleted
many times.

No comparable class inNo comparable class in
STL! The internal data structure of a

TClonesArray

CSC08 • ROOT 97

Traditional Arrays
Very large number of new and delete calls in large

loops like this (N(100000) x N(10000) times
new/delete):

10000

N(100000)

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {
a[i] = new TTrack(x,y,z,...);
...

} N(10000)}
...
a.Delete();

}

()

CSC08 • ROOT 98

}

You better use a TClonesArray which reduces the
number of new/delete calls to only N(10000):
TClonesArray a("TTrack", 10000);

N(100000)

while (TEvent *ev = (TEvent *)next()) {
for (int i = 0; i < ev->Ntracks; ++i) {

new(a[i]) TTrack(x,y,z,...);new(a[i]) TTrack(x,y,z,...);
...

}
N(10000)

...
a.Delete();

}

Pair of new / delete calls cost about 4 µs
Allocating / freeing memory NN(109) times costs about

CSC08 • ROOT 99

g g y ()
1 hour!

ROOT Trees

Trees
From:
Simple data types
(e.g. Excel tables)

To:
Complex data types
(e.g. Database tables)

Event

Header Type

Particles

Pt Charge

Energy Track

VertexVertex

Position

CSC08 • ROOT 101

…

Trees
• Databases have row wise access

– Designed to store complete objects.es g ed o s o e co p e e objec s
– Data clustering is organized around objects and

containers of objects. j
– Can only access the full object (e.g. full event)

• ROOT trees have column wise accessROOT trees have column wise access
– Direct access to any event, any branch or any leaf

even in the case of variable length structureseven in the case of variable length structures
– Designed to access only a subset of the object

attributes (e.g. only particles’ energy)

CSC08 • ROOT 102

(g y p gy)

Why Trees ?
object.Write() convenient for simple objects like

histograms, inappropriate for saving g , pp p g
collections of events containing complex
objectsj

• Reading a collection: read all elements (all
events)events)

• With trees: only one element in memory, or
even only a part of it (less I/O)even only a part of it (less I/O)

CSC08 • ROOT 103

Why Trees ?
• Extremely efficient write once, read many

("WORM")()
• Designed to store >109 (HEP events) with

same data structuresame data structure
• Trees allow fast direct and random access to

any entry (sequential access is the best)any entry (sequential access is the best)
• Optimized for network access

CSC08 • ROOT 104

Building ROOT Trees
Overview of

Trees– Trees
– Branches

5 t t b ild TT5 steps to build a TTree

CSC08 • ROOT 105

Tree structure

CSC08 • ROOT 106

Tree structure
• Branches: directories
• Leaves: data containers
• Can read a subset of all branches – speeds up

considerably the data analysis processes
T l t b ti i d f d t l i• Tree layout can be optimized for data analysis

• The class for a branch is called TBranch
• Variables on TBranch are called leaf (yes TLeaf)• Variables on TBranch are called leaf (yes - TLeaf)
• Branches of the same TTree can be written to

separate filesseparate files

CSC08 • ROOT 107

Memory ↔ Tree

0 T.GetEntry(6)
Memory

Each Node is a branch in the Tree

1
2
3
4
5
6
77
8
9
10
11
12
1313
14
15
16
17
18 T.Fill()

T
CSC08 • ROOT 108

T

Five Steps to Build a Tree
Steps:

1 Create a TFile1. Create a TFile
2. Create a TTree
3 Add TB h t th TT3. Add TBranch to the TTree
4. Fill the tree
5. Write the file

CSC08 • ROOT 109

Example macro
void WriteTree()
{

Event *myEvent = new Event();Event *myEvent = new Event();
TFile f("AFile.root");
TTree *t = new TTree("myTree","A Tree");
t->Branch("EventBranch", myEvent);
for (int e=0;e<100000;++e) {

myEvent->Generate(); // hypotheticaly (); // yp
t->Fill();

}
t->Write();t->Write();

}

CSC08 • ROOT 110

Step 1: Create a TFile Object

Trees can be huge need fileTrees can be huge need file
for swapping filled entries

TFile *hfile = new TFile("AFile.root");

CSC08 • ROOT 111

Step 2: Create a TTree Object

The TTree constructor:
Tree name (e g "myTree")– Tree name (e.g. myTree)

– Tree title

TTree *tree = new TTree("myTree","A Tree");

CSC08 • ROOT 112

Step 3: Adding a Branch

• Branch name• Branch name
• Pointer to the object

Event *myEvent = new Event();
myTree->Branch("eBranch", myEvent);

CSC08 • ROOT 113

y (, y);

Step 4: Fill the Tree
• Create a for loop

Assign al es to the object• Assign values to the object
contained in each branch

• TTree::Fill() creates a new
entry in the tree: snapshot of
values of branches’ objects

f (i t 0 <100000 ++) {for (int e=0;e<100000;++e) {
myEvent->Generate(e); // fill event
myTree->Fill(); // fill the tree

CSC08 • ROOT 114

}

Step 5: Write Tree To File

myTree->Write();

CSC08 • ROOT 115

Reading a TTree
• Looking at a tree

Ho to read a tree• How to read a tree
• Friends and chains

CSC08 • ROOT 116

Example macro
void ReadTree()
{
Event *myEvent = 0;Event myEvent 0;
TFile f("AFile.root");
TTree *myTree = (TTree*)f->Get("myTree");
T >S tB hAdd ("E tB h"myTree->SetBranchAddress("EventBranch",

myEvent);
for (int e=0;e<100000;++e) {

myTree->GetEntry(e);
myEvent->Analyze();

}}
}

Th i t (E t) MUST b t t 0
CSC08 • ROOT 117

The pointer (myEvent) MUST be set to 0

How to Read a TTree

Example:Example:

1. Open the Tfile
TFile f("AFile.root")

OR
2. Get the TTree

TTree *myTree = 0;
f G tObj t(" T "f.GetObject("myTree",
myTree)

CSC08 • ROOT 118

How to Read a TTree
3. Create a variable pointing to the data
root [] Event *myEvent = 0;

4. Associate a branch with the variable:
root [] myTree->SetBranchAddress("eBranch", myEvent);

5 R d t i th TT5. Read one entry in the TTree
root [] myTree->GetEntry(0)
root [] myEvent->GetTracks()->First()->Dump()[] y () () p()
==> Dumping object at: 0x0763aad0, name=Track,

class=Track
fPx 0.651241 X component of the momentum
fPy 1.02466 Y component of the momentum
fPz 1.2141 Z component of the momentum
[...]

CSC08 • ROOT 119

[]

Branch Access Selection
• Use TTree::SetBranchStatus() to activate only

the branches holding wanted variables.g
• Speed up considerably the reading phase

0TClonesArray* myMuons = 0;
// disable all branches
myTree->SetBranchStatus("*", 0);y
// re-enable the "muon" branches
myTree->SetBranchStatus("muon*", 1);
myTree->SetBranchAddress("muon" myMuons);myTree >SetBranchAddress(muon ,myMuons);
// now read (access) only the "muon" branches
myTree->GetEntry(0);

CSC08 • ROOT 120

Looking at the Tree
TTree::Print() shows the data layout

root [] TFile f("AFile.root")
root [] myTree->Print();
**
*Tree :myTree : A ROOT tree *
*Entries : 10 : Total = 867935 bytes File Size = 390138 *
* : : Tree compression factor = 2.72 *
**
*Branch :eBranch *
*Entries : 10 : BranchElement (see below) *
..
*Br 0 :fUniqueID : *
*Entries : 10 : Total Size= 698 bytes One basket in memory *y y
*Baskets : 0 : Basket Size= 64000 bytes Compression= 1.00 *
..
…
…

CSC08 • ROOT 121

Looking at the Tree
TTree::Scan("leaf:leaf:….") shows the values
root [] myTree->Scan("fNseg:fNtrack"); > scan.txt[] y (g);

root [] myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","",
"colsize=13 precision=3 col=13:7::15.10");

**
* Row * Instance * fEvtHdr.fDate * fNtrack * fPx * fPy *
**
* 0 * 0 * 960312 * 594 * 2.07 * 1.459911346 * 0 0 960312 594 2.07 1.459911346
* 0 * 1 * 960312 * 594 * 0.903 * -0.4093382061 *
* 0 * 2 * 960312 * 594 * 0.696 * 0.3913401663 *
* 0 * 3 * 960312 * 594 * -0.638 * 1.244356871 *
* 0 * 4 * 960312 * 594 * -0.556 * -0.7361358404 *
* 0 * 5 * 960312 * 594 * -1.57 * -0.3049036264 *
* 0 * 6 * 960312 * 594 * 0.0425 * -1.006743073 *
* 0 * 7 * 960312 * 594 * -0.6 * -1.895804524 *

CSC08 • ROOT 122

TTree Selection Syntax

Prints the first 8 variables of the tree.
MyTree->Scan();

Prints all the variables of the tree.
S l t ifi i bl

MyTree->Scan("*");

Select specific variables:

Prints the values of var1 var2 and var3
MyTree->Scan("var1:var2:var3");

Prints the values of var1, var2 and var3.
A selection can be applied in the second argument:

MyTree->Scan("var1:var2:var3" "var1>0");

Prints the values of var1, var2 and var3 for the entries
where var1 is greater than 0

MyTree >Scan(var1:var2:var3 , var1>0);

CSC08 • ROOT 123

e e a s g ea e a 0
Use the same syntax for TTree::Draw()

Looking at the Tree
TTree::Show(entry_number) shows the values

for one entry

root [] myTree->Show(0);
======> EVENT:0
eBranch = NULL
fUniqueID = 0
fBits = 50331648
[][...]
fNtrack = 594
fNseg = 5964
[...]
fEvtHdr.fRun = 200
[...]
fTracks.fPx = 2.066806, 0.903484, 0.695610, -0.637773,...
fTracks.fPy = 1.459911, -0.409338, 0.391340, 1.244357,...

CSC08 • ROOT 124

fTracks.fPy 1.459911, 0.409338, 0.391340, 1.244357,...

TChain: the Forest
• Collection of TTrees: list of ROOT files containing

the same tree
• Same semantics as TTree
As an example, assume we have three files called

fil 1 t fil 2 t fil 3 t E h t i tfile1.root, file2.root, file3.root. Each contains tree
called "T". Create a chain:
TChain chain("T"); // argument: tree name
chain.Add("file1.root");
chain Add("file2 root");chain.Add(file2.root);
chain.Add("file3.root");

Now we can use the TChain like a TTree!
CSC08 • ROOT 125

Now we can use the TChain like a TTree!

T(3)
TChain

T(3)
file3.root

T(2)
file2.root

T(1)T(1)
file1.root

chain files together

CSC08 • ROOT 126

Data Volume & Organisation
100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree TChain

• A TFile typically contains 1 TTree
• A TChain is a collection of TTrees or/and TChains
• A TChain is typically the result of a query to a file

catalog

CSC08 • ROOT 127

g

Tree Friends
t

tree_1 tree_2

tree

n x

i ja b c
o p

i j

k l x

TFile f1("tree1.root");
t AddF i d("t 1" "t 2 t")

q r

tree.AddFriend("tree_1", "tree2.root")
tree.AddFriend("tree_2", "tree3.root");
tree.Draw("x:a", "k<c");

CSC08 • ROOT 128

tree.Draw("x:tree_2.x", "sqrt(p)<b");

Summary: Trees, basics
• TTree is one of the most powerful collections

available for HEP
• Extremely efficient for huge number of data

sets with identical layoutsets with identical layout
• Very easy to look at TTree - use TBrowser!

W it d (WORM) id l f• Write once, read many (WORM) ideal for
experiments' data

• Still: extensible, users can add their own tree
as friend

CSC08 • ROOT 129

Splitting

Split level = 0 Split level = 99

CSC08 • ROOT 130

Splitting
• Creates one branch per member – recursively
• Allows to browse objects that are stored in j

trees, even without their library
• Makes same members consecutive, e.g. for , g

object with position in X, Y, Z, and energy E,
all X are consecutive, then come Y, then Z,

ffthen E. A lot higher zip efficiency!
• Fine grained branches allow fain-grained I/O -

read only members that are needed, instead
of full object
S STL i !

CSC08 • ROOT 131

• Supports STL containers, too!

Splitting
Setting the split level (default = 99)

Split level = 0 Split level = 99

CSC08 • ROOT 132

tree->Branch("EvBr", &event, 64000, 0);

Performance Considerations
A split branch is:
• Faster to read - the type does not have to beFaster to read the type does not have to be

read each time
• Slower to write due to the large number of• Slower to write due to the large number of

branches

CSC08 • ROOT 133

Analyzing TreesAnalyzing Trees

Selectors, Analysis, PROOF

CSC08 • ROOT 134CSC08 • ROOT 134

Recap
TTree efficient storage and access

for huge amounts of structured datag
Allows selective access of data
TTree knows its layoutTTree knows its layout

Almost all HEP analyses based on TTree

CSC08 • ROOT 135CSC08 • ROOT 135

TTree Data Access
TSelector: generic "TTree based analysis"
Derive from it ("TMySelector")Derive from it (TMySelector)
ROOT invokes TSelector's functions,
U d b t P (TS l t *)Used e.g. by tree->Process(TSelector*,…),

PROOF
Functions called are virtual, thus TMySelector's

functions called.

CSC08 • ROOT 136CSC08 • ROOT 136

TSelector
Steps of ROOT using a TSelector:
1 setup Init(TTree*)1. setup Init(TTree)

called to inform selector about tree
2 start SlaveBegin()2. start SlaveBegin()

called to create histograms
3 P (L 64 t)3. run Process(Long64_t)

called for each entry to load and analyze it
4. end Terminate()

called to fit histograms, write them to files,…

CSC08 • ROOT 137CSC08 • ROOT 137

TTree Data Access
E.g.

Init(tree)

tree->Process("MySelector.C+")

SlaveBegin()

Init(tree)

SlaveBegin()

Process(i)Process(i)

t t ?
yes

T i t ()

next entry?
no

y

CSC08 • ROOT 138CSC08 • ROOT 138

Terminate()

TSelector: Usage
• Init(TTree* tree):

e.g. TMySelector::fChain = tree.g y
Set branch addresses.

• SlaveBegin(): create histogramsSlaveBegin(): create histograms
• Process(Long64_t entry):

fChain >GetTree() >GetEntry(entry);fChain->GetTree()->GetEntry(entry);
fill histograms
T i t () fit hi t• Terminate(): fit; save histograms

CSC08 • ROOT 139CSC08 • ROOT 139

Analysis Example
Determine trigger efficiencies from data, typical

ingredient in analysesg y
Trigger selection before writing data: not all

events availableevents available
Usually higher energy is taken, lower is ignored
E l 15G V t i t ithExample 15GeV muon trigger: events with a

muon > 15GeV transverse momentum ("pT")
d dare recorded.

muon p muon pT

CSC08 • ROOT 140CSC08 • ROOT 140beam

Ideal Trigger
Efficiency: probability to record an event with a

given (transverse) muon momentumg ()

eff = triggered/all none alleff = triggered/all

Ideal 15GeV
muon trigger

CSC08 • ROOT 141CSC08 • ROOT 141

Trigger Example
Example for a trigger from STAR @ BNL

Main properties:
l t• plateau

• turn-on
• minimum

CSC08 • ROOT 142CSC08 • ROOT 142

Trigger Efficiency From Data
Look at data triggered by 15GeV muon trigger:
for each event's muon:for each event s muon:

T=triggered, N=not triggered
{T} {NTN}{TT}{TNT}{NT}{TT}{T} {NTN}{TT}{TNT}{NT}{TT}…

But this sample doesn't see {N}, {NN}, {NNN},…
eff = |T| / all = |T| / (|T| + |N|)
But |N| unknown! Cannot determine efficiency!| | y
Instead: need muons that are independent of

trigger ("unbiased")

CSC08 • ROOT 143CSC08 • ROOT 143

trigger (unbiased)

Dice And Tag / Probe
Think of two dice

Want probability for "6" ("6" trigger efficiency)
H l t i d d t ll lt h 1 "6"Have only triggered data, all results have >1 "6"

{1,6}, {6,4}, {6,6}, {1,6},…

Solution: one die has 6, the other is unbiased!,

Result: N N T N will yield 1/6
CSC08 • ROOT 144CSC08 • ROOT 144

Result: N, N, T, N,… will yield 1/6

Muons And Tag / Probe
Solution: events with >1 muon
For each muon:For each muon:

if exists other muon causing trigger:
thi i bi d!this muon is unbiased!

Need trigger decision stored with data, as in:
"other muon caused the 15GeV muon trigger"other muon caused the 15GeV muon trigger

CSC08 • ROOT 145CSC08 • ROOT 145

Get Data From TTree
In TSelector::Init(tree) select branches and

connect tree with our member fMuons:
TTree* t = fChain->GetTree();
t->SetBranchStatus("*", 0); // all off
t >S tB hSt t (" *" 1) // b tt->SetBranchStatus("muons*", 1); // but muons
t->SetBranchAddress("muons", fMuons);

TTree::GetEntry(i) will load data from branch
muons into fMuons; can access data via
fMuons TMySelector

fMuons

TREE
muons

CSC08 • ROOT 146CSC08 • ROOT 146

fMuonsmuons

TClonesArray
fMuons could be TClonesArray:
TClonesArray* fMuons; // array of TMuony ; // y
class TMuon: public TObject {
public:
...
float Pt() const;
bool Mu15() const; // triggered

Print pT of the i th muon:

};

Print pT of the i-th muon:
TMuon* muon = (TMuon*) fMuons->At(i);
cout << muon->Pt() << endl;

CSC08 • ROOT 147CSC08 • ROOT 147

cout << muon >Pt() << endl;

Determine Efficiency
Take a random muon number i ("probe")
Check that another muon ("tag") has causedCheck that another muon (tag) has caused

trigger, then:
++ all[probe >pT()]++ all[probe->pT()]
if probe muon has triggered:

++fired[probe->pT()]
efficiency[pT] = fired[pT] / all[pT]y[p] [p] [p]
Counting in pT-bins – use histogram
Division: binomial errors check Wikipedia ;)
CSC08 • ROOT 148CSC08 • ROOT 148

Division: binomial errors, check Wikipedia ;-)

Result
Dividing probes / tags yields sampled efficiency
"Bumpy" because of low numbers of eventsBumpy because of low numbers of events

CSC08 • ROOT 149CSC08 • ROOT 149

Statistics, Or: We Know Better!
Sampling "known" distribution
Influenced by statisticsInfluenced by statistics

Missing data

Not monotonic!

CSC08 • ROOT 150CSC08 • ROOT 150

Fit
Combine our knowledge with statistics / data by

fitting a distribution:g

1 Find appropriate1. Find appropriate
function with
parametersparameters

2. Fit function to
distribution

CSC08 • ROOT 151CSC08 • ROOT 151

Fitting: The Function
Finding the proper function involves:
• behavioral analysis:behavioral analysis:

starts at 0, goes to constant, monotonic,…
• physics interpretation:• physics interpretation:

"E proportional to sin^2(phi)"
h i d k l d f t i l f ti• having a good knowledge of typical functions
(see TMath)

• finding a good compromise between
generalization ("constant") and precision

CSC08 • ROOT 152CSC08 • ROOT 152

("polynomial 900th degree")

Fitting: The Function
Finding the proper function involves:
• behavioral analysis:behavioral analysis:

starts at 0, goes to constant, monotonic,…
• physics interpretation:• physics interpretation:

"E proportional to sin^2(phi)"
h i d k l d f t i l f tiMAGIC• having a good knowledge of typical functions
(see TMath) MAGIC

• finding a good compromise between
generalization ("constant") and precision

CSC08 • ROOT 153CSC08 • ROOT 153

("polynomial 900th degree")

Fitting: Parameters
Let's take "erf" erf(x)/2.+0.5

Free parameters:
(erf((x-[0])/[1])/2.+0.5)*[2]

[0]: x @ center of the slope
[1]: width of the slope[1]: width of the slope
[2]: maximum efficiency

[0]

[2]

How do I know?
[0]

CSC08 • ROOT 154CSC08 • ROOT 154

Study function behavior [1]

Fitting: Parameter Init
Need to initialize parameters!
sensible: [0]: 35 [1]: 10 [2]: 1sensible: [0]: 35, [1]: 10, [2]: 1

CSC08 • ROOT 155CSC08 • ROOT 155

Fitting: The Math
Fitting = finding parameters such that

f(x) – hist(x)() ()
minimal for all x [or any similar measure]

Histogram with errors:
f(x) – hist(x) / err(x)
[or similar]

CSC08 • ROOT 156CSC08 • ROOT 156

Fitting In ROOT
Define fit function:
TF1* f = new TF1("myfit",
"(TMath::Erf((x-[0])/[1])/2.+0.5)*[2]"
0., 100.);

Set parameters:
f->SetParameter(0 35);f >SetParameter(0, 35.);
f->SetParameter(1, 10.);
f->SetParameter(2, 1.);

Fit it to the histogram:

CSC08 • ROOT 157CSC08 • ROOT 157

hist->Fit(f);

Fitting Result
Result of fit printed or
cout << f->GetParameter(0) << endl;

[0]: 34 9

cout << f >GetParameter(0) << endl;

[0]: 34.9
[1]: 12.1
[2]: 0.98

which means:
(TMath::Erf((x-34.9)/12.1)/2.+0.5)*0.98

CSC08 • ROOT 158CSC08 • ROOT 158

Get efficiency at pT=42GeV: f->Eval(42.)

Analysis: Recap
We started with the trigger problem – and

ended with an answer

You now knowYou now know
• how to determine trigger efficiency from

t i d d ttriggered data
• why large samples are relevant
• what fitting is, how it works, when to do it, and

how it's done with ROOT.

CSC08 • ROOT 159CSC08 • ROOT 159

Interactive Data Analysis with
PROOF

Bleeding Edge Physics with
Bleeding Edge ComputingBleeding Edge Computing

Parallel Analysis: PROOF
Some numbers (from Alice experiment)
• 1 5 PB (1 5 * 1015) of raw data per year1.5 PB (1.5 10) of raw data per year
• 360 TB of ESD+AOD* per year (20% of raw)

O t 15 MB/ ill t k 9 th !• One pass at 15 MB/s will take 9 months!

Parallelism is the only way out!

CSC08 • ROOT 161

* ESD: Event Summary Data AOD: Analysis Object Data

PROOF
Huge amounts of events, hundreds of CPUs
Split the job into N events / CPU!p j
PROOF for TSelector based analysis:
• start analysis locally ("client")start analysis locally (client),
• PROOF distributes data and code,
• lets CPUs ("workers") run the analysis• lets CPUs (workers) run the analysis,
• collects and combines (merges) data,

h l i lt l ll• shows analysis results locally
• More dynamic than a batch system

CSC08 • ROOT 162

Including on-the-fly status reports!

Interactive!
• Start analysis
• Watch status while runningWatch status while running
• Forgot to create a histogram?

Interr pt the process– Interrupt the process
– Modify the selector

R t t th l i– Re-start the analysis

CSC08 • ROOT 163

PROOF

Storage

PROOF fCli t PROOF farmcommands,commands,
scriptsscripts

Client

MASTER
list of outputlist of output

objectsobjects
(histograms, …)(histograms, …)

CSC08 • ROOT 164

Workers

Creating a session
To create a PROOF session from the ROOT
prompt just type:prompt, just type:

TProof *p = TProof::Open("master")

where "master" is the hostname of the master
machine on the PROOF cluster

CSC08 • ROOT 165

PROOF Analysis
• Example of local TChain analysis
// Create a chain of trees

PROOF

// Create a chain of trees
root[0] TChain *c = new TChain("myTree");
root[1] c->Add("http://www.any.where/file1.root");
root[2] c->Add("http://www.any.where/file2.root");PROOFroot[2] c >Add(http://www.any.where/file2.root);

// MySelector is a TSelector
root[3] c->Process("MySelector.C+");y

CSC08 • ROOT 166

PROOF Analysis
• Same example with PROOF
// Create a chain of trees// Create a chain of trees
root[0] TChain *c = new TChain("myTree");
root[1] c->Add("http://www.any.where/file1.root");
root[2] c->Add("http://www.any.where/file2.root");root[2] c >Add(http://www.any.where/file2.root);

// Start PROOF and tell the chain to use it
root[3] TProof::Open("masterURL");p
root[4] c->SetProof();

// Process goes via PROOF
root[5] c->Process("MySelector.C+");

CSC08 • ROOT 167

TSelector & PROOF
• Begin() called on the client only
• SlaveBegin() called on each worker: createSlaveBegin() called on each worker: create

histograms
• SlaveTerminate() rarely used; post• SlaveTerminate() rarely used; post

processing of partial results before they are
sent to master and mergedsent to master and merged

• Terminate() runs on the client: save results,
di l hi tdisplay histograms, …

CSC08 • ROOT 168

PROOF Analysis
output listSelector (worker)

SlaveBegin()
•Create histos, …
•Define output list

Process()

preselection analysisOK
SlaveTerminate()

•Post-processing

event
branch

nSelector (client)

branch

leaf

leafleaf

branch

branch

leaf leaf

Begin() Terminate()
•Final analysis
(fitting, saving …)

leafleaf

1 2 n lastChain

CSC08 • ROOT 169

loop over events

Output List (result of the query)
• Each worker has a partial output list
• Objects have to be added to the list in j

TSelector::SlaveBegin() e.g.:
fHist = new TH1F("h1", "h1", 100, -3., 3.);

• At the end of processing the output list gets

fHist new TH1F(h1 , h1 , 100, 3., 3.);
fOutput->Add(fHist);

At the end of processing the output list gets
sent to the master

• The Master merges objects and returns themThe Master merges objects and returns them
to the client. Merging is e.g. "Add()" for
histograms, appending for lists and trees

CSC08 • ROOT 170

g , pp g

Results

At the end of Process() the output list isAt the end of Process(), the output list is
accessible via gProof->GetOutputList()

// Get the output list
root[0] TList *output = gProof->GetOutputList();
// Retrieve 2D histogram "h2"

1 2 2 2 2root[1] TH2F *h2 = (TH2F*)output->FindObject("h2");
// Display the histogram
root[2] h2->Draw();

CSC08 • ROOT 171

PROOF GUI Session
Starting a PROOF GUI session is trivial:

O GUI

TProof::Open()

Opens GUI:

CSC08 • ROOT 172

PROOF GUI Session – Results
Results accessible via TSessionViewer, too:

CSC08 • ROOT 173

PROOF Documentation
Documentation available online at

root cern ch/twiki/bin/view/ROOT/PROOFroot.cern.ch/twiki/bin/view/ROOT/PROOF
But of course you need a little cluster of CPUs

Like your multicore laptop!Like your multicore laptop!

CSC08 • ROOT 174

Summary
You've learned:
• analyzing a TTree can be easy and efficientanalyzing a TTree can be easy and efficient
• integral part of physics is counting

ROOT id hi t i d fitti• ROOT provides histogramming and fitting
• > 1 CPU: use PROOF!

Looking forward to hearing from you:Looking forward to hearing from you:
• as a user (help! bug! suggestion!)

d d l !
CSC08 • ROOT 175

• and as a developer!

