
phpModeler – a web model extractor
Josip Maras

Faculty of Electrical Engineering,
Mechanical Engineering and Naval

Architecture,
University of Split, Croatia

00 385 21 305 832

josip.maras@fesb.hr

Maja Štula
Faculty of Electrical Engineering,

Mechanical Engineering and Naval
Architecture,

University of Split, Croatia
00 385 21 305 852

maja.stula@fesb.hr

Ivica Crnković
School of Innovation, Design and

Engineering,
Malardalen University, Vasteras,

Sweden
00 46 21 103 183

ivica.crnkovic@mdh.se

ABSTRACT

This paper presents phpModeler, a tool for reverse engineering of

legacy php web applications that generates static UML diagrams

showing resources the current web page is using, its functions and

dependencies it has on other web pages. Once the models

describing individual web pages have been generated,

phpModeler can analyze them and generate dependency models

that for each entity in every page model show all entities

dependent on it. phpModeler can also be used to highlight the

difference between page models – a feature that, when combined

with a SVN repository shows the way how the current web page

has evolved over time. phpModeler is a plugin for the Eclipse

IDE.

Categories and Subject Descriptors

D.2.7 [Software engineering]: Distribution, Maintenance, and

Enhancement – reverse engineering tool.

Keywords

Reverse engineering tool, maintenance, architecture recovery, web

applications.

1. INTRODUCTION
In the last two decades, web applications have made a

tremendous leap forward: from simple static web pages developed

only in HTML to full-fledged dynamic web applications

developed using server-side technologies such as php, asp.net,

java, ruby, python and etc., that extensively use web services,

databases and client-side technologies such as JavaScript, flash,

and silverlight. Unfortunately, because of the very short time-to-

market, these applications are often developed in an un-

disciplined way; i.e. in php this approach can often lead to whole

web pages developed as a mixture of SQL, php, HTML and

JavaScript – four different languages in a single file, mixing

business, presentation and data access logic. In turn, this often

means that considerable effort is necessary to maintain these

applications [1]. To improve development and maintenance

efficiency also these pages should be modeled and their design

should be designed using standard design or modeling languages,

such as UML. Modeling and documentation of existing pages is

as important as design of new applications.

In this paper we present a Reverse Engineering (RE) tool –

phpModeler that statically analyses web application source code

(php scripts, html pages, and JavaScript libraries) and generates

models that can be used as a basis for architecture recovery and

that facilitate maintenance of legacy web applications.

2. PHPMODELER
phpModeler is divided into two modules:

 Model generator module that generates static UML

diagrams representing resources the current web page is

using (database tables, files, JavaScript libraries), its

functions, properties and dependencies on other web

pages.

 Difference analyzer module that shows differences

between web page model versions.

Model generator module comprises the following modules:

code processor, dependency analyzer and UML generator.

Figure 1 Model generator modules

Code processor is a page parsing module that parses php, html

and JavaScript code. Its main functionality is to generate a web

page model based on the adapted Connalen UML extensions[2].

Dependency analyzer is a module that analyses all generated

models and that for each web page entity (JavaScript library,

database table, file, php library, web page, etc.) finds all other

entities dependent on it; for every database table these models

show all web pages that access them; for function libraries they

show web pages that use those functions, etc. This simplifies the

process of change, because for each change the maintainer can

easily see where the change propagates.

UML generator is a module used to generate UML diagrams in

a standard format used by the majority of UML tools [3]. As an

input it uses models generated by the code processor and the

dependency analyzer modules.

phpModeler can also be used to highlight the differences

between page models. For that functionality it uses the difference

analyzer module and the EMF Compare tool [4]. We have

connected this module to a SVN repository and in that way gained

the functionality of modeling page evolution. The model

differences are shown in a way similar to [5].

Figure 2 Modeling page evolution with phpModeler

The process of a web page model generation goes as follows. In

phpModeler, the user selects the root folder or individual web

pages and starts the modeling process. The code processor

module parses the selected web pages and all referenced web

pages, and generates their models. The dependency analyzer

module then analyses the generated models and for each entity

(database table, file, web page) generates models showing other

entities dependent on it. After the model generation phase, the

UML generator component generates UML diagrams.

3. RELATED WORK
In the last decade several web application RE tools have been

made, some of which are: WARE [6], ReWeb [7], WebUml [8],

Enterprise Architect[9], Visual Paradigm for UML[10] .

WARE is a RE tool that adopts the UML extensions proposed

by Conallen and that uses static, dynamic and behavioural

analysis to generate class diagrams representing the architecture of

web applications; sequence and collaboration diagrams to

represent the dynamic model and use case diagrams to represent

web application behaviour.

ReWeb is a RE tool that statically analyses web application

source code and generates models that represent the web

application as a graph structure.

WebUml is a RE tool that generates class diagrams, used to

describe the structure and components of a Web application and

state diagrams that represent the behaviours and the navigational

structure of the Web application. Web UML models a web

application using modified Connalen UML extensions.

Enterprise Architect is a commercial general modeling tool

that, among other things, enables RE of object-oriented php into

UML and change synchronization between source code and UML

models. It can be used to create class diagrams representing

classes defined in php, and sequence diagrams that show what

PHP classes use and how they are used.

Visual Paradigm for UML is a commercial UML CASE tool

that can reverse engineer object-oriented php into UML models.

phpModeler’s functionality is similar to other web application

RE tools based on the Conallen’s web extensions for UML. It

offers an automated way to generate models that facilitate

architecture recovery and maintenance of legacy web applications.

Compared to other, similar web application RE tools, the benefits

of using phpModeler are:

 phpModeler simplifies web page maintenance because it can

be used to generate dependency models that show the way in

which change propagates trough the web application.

 phpModeler has the capability to highlight the difference

between page models. This functionality combined with the

capability to access to SVN repository can be used to show

web page evolution.

 phpModeler can be used from the Eclipse IDE, which is the

IDE often used for developing php applications – so one gets

the benefit of modelling and coding web pages from the

same environment.

REFERENCES
[1] Mikkonen, T. Taivalsaari, A.; 2008; Web Applications –

Spaghetti Code for the 21st Century; Software Engineering

Research, Management and Applications

[2] Conallen, J.; 2003; Building Web Applications with UML

Second edition. Addison-Wesley

[3] XMI – XML Metadata Interchange; 25.05.2009;

http://www.omg.org/technology/documents/formal/xmi.htm

[4] Niere, J.; 2004; Visualizing differences of UML diagrams

with Fujaba; In Proc. Of the 2nd Fujaba Days

[5] EMF Compare; 15.06.2009. ;

http://wiki.eclipse.org/index.php/EMF_Compare

[6] Di Lucca, G.; Fasolino A.R.; Tramontana P.; 2004 Reverse

engineering Web applications: the WARE approach, Journal

of Software maintenance and evolution: Research and

practice

[7] Ricca F., Tonella P.; 2001; Understanding and restructuring

Web sites with ReWeb; IEEE Multimedia

[8] Ballettini, C.; Marchetto A.; Trentini A.; 2004; WebUml:

Reverse Engineering of Web Applictions, ACM Symposium

on Applied Computing

[9] Enterprise Architect; 25.05.2009;

www.sparxsystems.com.au/platforms/php_uml.html

[10] Visual Paradigm for UML; 25.05.2009; www.visual-

paradigm.com

http://www.omg.org/technology/documents/formal/xmi.htm
http://wiki.eclipse.org/index.php/EMF_Compare
http://www.sparxsystems.com.au/platforms/php_uml.html
http://www.visual-paradigm.com/
http://www.visual-paradigm.com/

Appendix: Tool Demonstration Description
The demonstration of the phpModeler tool will be focused on three examples showing reverse engineering of a

user authentication process. The first example is intended to illustrate the basic principles, the second is a more

complex example with dependencies that illustrate tool usage for complex web pages, and the third example will

demonstrate management of differences between different module versions.

Example 1: Modeling web page static structure
This is a simple example that will show static models generated by the phpModeler tool. It will also be used to

introduce the basic concepts of the web page modeling UML extensions.

1. Figure 1 Static diagram of the login page example

Figure 1. shows the static diagram of a simple login web page. In this example the login page is a php server

script that builds a html client page containing a web form by which the user submits user credentials back to the

login page. The login page then reads sent user data and tries to find it in the “system_users” database table. If it

finds the matching data it redirects the user to the main part of the system and if not the user is notified that the

used credentials are invalid.

Example 2: Generating dependency models
In this example several web pages will be modeled, and for each web page entity of each modeled web page,

dependency models will be generated.

Figure 2 Example dependency model

Figure 2. shows one of the results of the dependency modeling phase: php server scripts that are dependent on the

“system_users” database table. With these diagrams the person in charge of system maintenance can easily see

that if the “system_users” database table has to be changed, that change will most likely propagate to the “login”,

“logoff” and “new_user” php scripts.

Figure 3 Example Dependency model

Figure 3 shows web pages dependent on the login page. If the user opens the main index page and is not logged

in to the system the index page redirects him/her to login page. The same happens when trying to access the

new_user and the logoff web page.

Example 3: Modeling page evolution

This example will show how page evolution can be modeled with phpModeler. Several versions of the same web

page will be checked out from the subversion repository and their differences will be modeled.

Figure 4 Model Difference Example

Figure 4. shows the results of the model comparison phase for two versions of the login web page. Two models

are merged and parts detected as similar are shown in black color, parts found only in the earlier version are

shown in green and parts found only in the newer version are shown in red.

Current tool state
The functionalities of generating static web page models and dependency models are completed and the

functionality of displaying model differences is currently in a refinement phase. The tool is available on the

http://www.fesb.hr/~jomaras/phpModeler web page as a preliminary version.

http://www.fesb.hr/~jomaras/phpModeler

