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Overview

In this module you will learn about:
 Pipes
 FIFOs
 Message Queues
 Shared Memory
 Semaphores
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Lesson: Pipes  

This lesson describes:
 Creating Pipes
 Using Pipes
 Using popen
 Pipe Limitations
 Filters
 Coprocesses

This lesson describes:
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 Using popen
 Pipe Limitations
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Creating a Pipe

The function pipe creates a file with two 
descriptors:

The function pipe creates a file with two 
descriptors:
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Creating a Pipe

int fd[2];
pid_t   pid;
    

if (pipe (fd) < 0) 
Error

if ((pid = fork()) < 0) {
Error 

} else if (pid > 0) {
close (fd[0]);
write (fd[1], “Guten Tag\n", 10);

} else { 
close (fd[1]);
n = read (fd[0], line, MAXLINE);

}
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popen

The popen function simplifies work with 
pipes: 
 Creates a pipe
 Forks a child
 Closes unused ends of the pipe

The popen function simplifies work with 
pipes: 
 Creates a pipe
 Forks a child
 Closes unused ends of the pipe

    #include <stdio.h>

    FILE *popen (const char *cmdstring, const char *type);

    int pclose (FILE *fp)
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Pipe Limitations

Pipes are the oldest form of IPC on UNIX.
They have two limitations:

 Pipes have been half duplex 
 Data flows in only one direction
 Some systems now provide full-duplex pipes

UNIX domain Sockets are full-duplex
 Pipes can be used only between processes that 

have a common ancestor
 FIFOs and UNIX Domain Sockets can be 

established between processes not in the parent-
child hierarchy

Pipes are the oldest form of IPC on UNIX.
They have two limitations:

 Pipes have been half duplex 
 Data flows in only one direction
 Some systems now provide full-duplex pipes

UNIX domain Sockets are full-duplex
 Pipes can be used only between processes that 

have a common ancestor
 FIFOs and UNIX Domain Sockets can be 

established between processes not in the parent-
child hierarchy
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Filters and Coprocesses

FilterFilter
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Lesson: FIFOs  

This lesson describes:
 Creating FIFOs
 Using FIFOs

This lesson describes:
 Creating FIFOs
 Using FIFOs
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FIFOs

FIFOs allow unrelated processes to 
exchange data.
 The st_mode member of the stat structure 

indicates that a file is a FIFO - S_ISFIFO macro 
tests for it

FIFO is used for:
 By shell commands to pass data from one 

shell pipeline to another without creating 
intermediate temporary files

 As rendezvous points in client/server 
applications to exchange data

FIFOs allow unrelated processes to 
exchange data.
 The st_mode member of the stat structure 

indicates that a file is a FIFO - S_ISFIFO macro 
tests for it

FIFO is used for:
 By shell commands to pass data from one 

shell pipeline to another without creating 
intermediate temporary files

 As rendezvous points in client/server 
applications to exchange data

#include <sys/stat.h>

int mkfifo (const char *pathname, mode_t mode);
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Lesson: Message Queues 
 

This lesson describes:
 Creating Message Queues
 Using Message Queues

This lesson describes:
 Creating Message Queues
 Using Message Queues
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Mesage Passing

AA BB

id id id

Queue

msgsnd
msgrcv

msgget
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Message Queues

A message queue is a list of messages 
stored in kernel
 Each queue has ID called key 
 Each message has a message type. 

Operations on message queues
 The msgget function  - creates a new queue 

or opens an existing one
 The msgsnd function - adds a message to 

the end of a queue. 
 The msgrcv function - fetches  messages 

from a queue
 we can fetch messages based on their 

type field

A message queue is a list of messages 
stored in kernel
 Each queue has ID called key 
 Each message has a message type. 

Operations on message queues
 The msgget function  - creates a new queue 

or opens an existing one
 The msgsnd function - adds a message to 

the end of a queue. 
 The msgrcv function - fetches  messages 

from a queue
 we can fetch messages based on their 

type field
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Lesson: Shared Memory  

This lesson describes:
 Creating Shared memories
 Using Shared Memories

This lesson describes:
 Creating Shared memories
 Using Shared Memories
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Shared Memory

AA BB

Shared
Segment
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Shared Memory

Shared memory allows two or more 
processes to share a given region of 
memory
 This is the fastest form of IPC
! Accesses must be synchronized

Operations on shared memories

Shared memory allows two or more 
processes to share a given region of 
memory
 This is the fastest form of IPC
! Accesses must be synchronized

Operations on shared memories#include <sys/shm.h>

int shmget (key_t key, size_t size, int flag);

int shmctl (int shmid, int cmd, struct shmid_ds *buf)
void *shmat (int shmid, const void *addr, int flag);

int shmdt (void *addr);
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Lesson: Semaphores  

This lesson describes:
 Creating Semaphores
 Restricting Accesses via Semaphores

This lesson describes:
 Creating Semaphores
 Restricting Accesses via Semaphores
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Semaphores

Resources Current/Limit

R1R1

R2R2

R3R3
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Usage

2/5

3/5

0/5
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Semaphores

A semaphore is a counter used to 
provide access to a shared data 
resource for multiple processes
 You can specify set of operations on 

semaphore to be executed atomically

Functions for working with semaphores:

A semaphore is a counter used to 
provide access to a shared data 
resource for multiple processes
 You can specify set of operations on 

semaphore to be executed atomically

Functions for working with semaphores:#include <sys/sem.h>

int semget (key_t key, int nsems, int flag);

int semctl (int semid, int semnum, int  cmd,   

... /* union semun arg */);

int semop (int semid, struct sembuf semoparray[],  size_t nops);
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