
Inter-process Communication

Programming UNIX

IPC 22

Overview

In this module you will learn about:
 Pipes
 FIFOs
 Message Queues
 Shared Memory
 Semaphores

In this module you will learn about:
 Pipes
 FIFOs
 Message Queues
 Shared Memory
 Semaphores

IPC 33

Lesson: Pipes

This lesson describes:
 Creating Pipes
 Using Pipes
 Using popen
 Pipe Limitations
 Filters
 Coprocesses

This lesson describes:
 Creating Pipes
 Using Pipes
 Using popen
 Pipe Limitations
 Filters
 Coprocesses

IPC 44

Creating a Pipe

The function pipe creates a file with two
descriptors:

The function pipe creates a file with two
descriptors:

ParentParent ChildChild

PIPE

fork

fd0 fd1

2222

1111fd0 fd1
3333

IPC 55

Creating a Pipe

int fd[2];
pid_t pid;

if (pipe (fd) < 0)
Error

if ((pid = fork()) < 0) {
Error

} else if (pid > 0) {
close (fd[0]);
write (fd[1], “Guten Tag\n", 10);

} else {
close (fd[1]);
n = read (fd[0], line, MAXLINE);

}

2222

1111

3333

3333

IPC 66

popen

The popen function simplifies work with
pipes:
 Creates a pipe
 Forks a child
 Closes unused ends of the pipe

The popen function simplifies work with
pipes:
 Creates a pipe
 Forks a child
 Closes unused ends of the pipe

 #include <stdio.h>

 FILE *popen (const char *cmdstring, const char *type);

 int pclose (FILE *fp)

IPC 77

Pipe Limitations

Pipes are the oldest form of IPC on UNIX.
They have two limitations:

 Pipes have been half duplex
 Data flows in only one direction
 Some systems now provide full-duplex pipes

UNIX domain Sockets are full-duplex
 Pipes can be used only between processes that

have a common ancestor
 FIFOs and UNIX Domain Sockets can be

established between processes not in the parent-
child hierarchy

Pipes are the oldest form of IPC on UNIX.
They have two limitations:

 Pipes have been half duplex
 Data flows in only one direction
 Some systems now provide full-duplex pipes

UNIX domain Sockets are full-duplex
 Pipes can be used only between processes that

have a common ancestor
 FIFOs and UNIX Domain Sockets can be

established between processes not in the parent-
child hierarchy

1111

2222

IPC 88

Filters and Coprocesses

FilterFilter

stdoutstdoutstdinstdinAA BB

CoprocessCoprocess

stdoutstdout

stdinstdin
AA

IPC 99

Lesson: FIFOs

This lesson describes:
 Creating FIFOs
 Using FIFOs

This lesson describes:
 Creating FIFOs
 Using FIFOs

IPC 1010

FIFOs

FIFOs allow unrelated processes to
exchange data.
 The st_mode member of the stat structure

indicates that a file is a FIFO - S_ISFIFO macro
tests for it

FIFO is used for:
 By shell commands to pass data from one

shell pipeline to another without creating
intermediate temporary files

 As rendezvous points in client/server
applications to exchange data

FIFOs allow unrelated processes to
exchange data.
 The st_mode member of the stat structure

indicates that a file is a FIFO - S_ISFIFO macro
tests for it

FIFO is used for:
 By shell commands to pass data from one

shell pipeline to another without creating
intermediate temporary files

 As rendezvous points in client/server
applications to exchange data

#include <sys/stat.h>

int mkfifo (const char *pathname, mode_t mode);

IPC 1111

Lesson: Message Queues

This lesson describes:
 Creating Message Queues
 Using Message Queues

This lesson describes:
 Creating Message Queues
 Using Message Queues

IPC 1212

Mesage Passing

AA BB

id id id

Queue

msgsnd
msgrcv

msgget

1111

3333

2222

IPC 1313

Message Queues

A message queue is a list of messages
stored in kernel
 Each queue has ID called key
 Each message has a message type.

Operations on message queues
 The msgget function - creates a new queue

or opens an existing one
 The msgsnd function - adds a message to

the end of a queue.
 The msgrcv function - fetches messages

from a queue
 we can fetch messages based on their

type field

A message queue is a list of messages
stored in kernel
 Each queue has ID called key
 Each message has a message type.

Operations on message queues
 The msgget function - creates a new queue

or opens an existing one
 The msgsnd function - adds a message to

the end of a queue.
 The msgrcv function - fetches messages

from a queue
 we can fetch messages based on their

type field

IPC 1414

Lesson: Shared Memory

This lesson describes:
 Creating Shared memories
 Using Shared Memories

This lesson describes:
 Creating Shared memories
 Using Shared Memories

IPC 1515

Shared Memory

AA BB

Shared
Segment

shmget1111

3333

shmat
shmat 2222

IPC 1616

Shared Memory

Shared memory allows two or more
processes to share a given region of
memory
 This is the fastest form of IPC
! Accesses must be synchronized

Operations on shared memories

Shared memory allows two or more
processes to share a given region of
memory
 This is the fastest form of IPC
! Accesses must be synchronized

Operations on shared memories#include <sys/shm.h>

int shmget (key_t key, size_t size, int flag);

int shmctl (int shmid, int cmd, struct shmid_ds *buf)
void *shmat (int shmid, const void *addr, int flag);

int shmdt (void *addr);

IPC 1717

Lesson: Semaphores

This lesson describes:
 Creating Semaphores
 Restricting Accesses via Semaphores

This lesson describes:
 Creating Semaphores
 Restricting Accesses via Semaphores

IPC 1818

Semaphores

Resources Current/Limit

R1R1

R2R2

R3R3

AA

BB

CC

Usage

2/5

3/5

0/5

IPC 1919

Semaphores

A semaphore is a counter used to
provide access to a shared data
resource for multiple processes
 You can specify set of operations on

semaphore to be executed atomically

Functions for working with semaphores:

A semaphore is a counter used to
provide access to a shared data
resource for multiple processes
 You can specify set of operations on

semaphore to be executed atomically

Functions for working with semaphores:#include <sys/sem.h>

int semget (key_t key, int nsems, int flag);

int semctl (int semid, int semnum, int cmd,

... /* union semun arg */);

int semop (int semid, struct sembuf semoparray[], size_t nops);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

